

A

Course File

On

“COMPUTER ORGANIZATION AND ARCHITECTURE”

Submitted by

Dr. Nidamanuru Srinivasa Rao
Associate Professor

In the Department of

Computer Science and Engineering

NARSIMHA REDDY ENGINEERING COLLEGE (UGC-AUTONOMOUS)

(Affiliated to J.N.T.U, HYDERABAD)

MAISAMMGUDA (V), DHULAPALLY (P), MEDCHAL (M) SECUNDERABAD-500100

(2022-2023)

COURSE FILE

Program Name : B.Tech- Computer Science and Engineering

Name of the Course : COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code : CS2104PC

Year & Semester : II– B.Tech- I SEM

S.NO CONTENTS Included

1 Department Vision & mission, PEOs ,PSOs and POs YES

2 Academic Calendar YES

3 Syllabus YES

4 CO/PO Mapping YES

5 Nominal Rolls of the Students YES

6 Time Table YES

7 Lesson Plan YES

8 Unit Wise question Bank YES

9 Old Question Papers YES

10 Question Papers (CIA & SEE) YES

11 Tutorial Sheets YES

12

Learning Methodologies: Experiential learning

(Industrial Visits, Internships, Mini Projects,

Academic Projects, Guest Lectures, Students

workshops etc), Problem Solving Methodologies

(Assignmnet, Quiz, Case study etc.)

YES

13 Subjects Notes/PPTs/Self study material. YES

14 Feedback on curriculum design and development YES

15 CO/PO attainment, analysis and action taken report YES

Recommendation/ Remarks :

1. Department Vision & Mission

Vision of the Department:

 To evolve as a center of excellence with international reputation by adapting the rapid

advancements in the computer specialization fields.

 Mission of the Department:

 1. To provide a strong theoretical and practical background in the area of computer science

with an emphasize on software development

 2. To inculcate Professional behavior, strong ethical values, leadership qualities, research

capabilities and lifelong learning.

 3. To educate students to be effective problem solvers, apply knowledge with social

sensitivity for the betterment of the society and humanity as a whole.

2. List of PEOs, POs & PSOs

PEOs:

1. PEO-I: To provide students with a solid foundation in mathematics, engineering, basic science

fundamentals required to solve computing problems and also to pursue higher studies and

research.

2. PEO-II To train students with good Computer Science and Engineering breadth so as to

comprehend, analyze, design and create innovative computing products and solutions for real

life problems.

3. PEO-III To inculcate in students professional and ethical attitude, communication skills,

teamwork skills, multi-disciplinary approach and an ability to relate computer engineering issues

with social awareness.

 POs:

1

PO1. Engineering knowledge: Apply the knowledge of basic sciences and fundamental

engineering concepts in solving engineering problems.

2

PO2. Problem analysis: Identify and define engineering problems, conduct experiments

and investigate to analyze and interpret data to arrive at substantial conclusions.

3

PO3. Design/development of solutions: Propose an appropriate solution for

engineering problems complying with functional constraints such as economic,

environmental, societal, ethical, safety and sustainability.

4

PO4. Conduct investigations of complex problems: Perform investigations, design and

conduct experiments, analyze and interpret the results to provide valid conclusions.

5

PO5. Modern tool usage: Select or create and apply appropriate techniques and IT tools

for the design & analysis of the systems.

6

PO6. The engineer and society: Apply reasoning informed by the contextual

knowledge to assess societal, health, safety, legal and cultural issues and the consequent

responsibilities relevant to the professional engineering practice.

7 PO7. Environment and sustainability: Demonstrate professional skills and contextual

reasoning to assess environmental or societal issues for sustainable development.

8

PO8. Ethics: Apply ethical principles and commit to professional ethics and

responsibilities and norms of the engineering practice.

9

PO9. Individual and team work: Function effectively as an individual, and as a

member or leader in diverse teams, and in multi-disciplinary situations.

10

PO10. Communication: Communicate effectively among engineering community,

being able to comprehend and write effectively reports, presentation and give / receive

clears instructions.

11

PO11. Project management and finance: Demonstrate and apply engineering &

management principles in their own / team projects in multidisciplinary environment.

12
PO12. Life-long learning: Recognize the need for, and have the ability to engage in

independent and lifelong learning.

PSOs:

1. PSO1: To provide effective and efficient real time solutions using acquired knowledge in

various domains to crack problem using suitable mathematical analysis, data structure and

suitable algorithm

2. PSO2: To develop environmental and sustainable engineering solution having global and

societal context using modern IT tools.

3. PSO3: To exhibit professional and leadership skills with ethical values dealing diversified

projects with excellent communication and documentation qualities.

2. Academic Calendar:

3. SYLLABUS:

COMPUTER ORGANIZATION AND ARCHITECTURE

B.Tech. II Year I Semester

Course Code Category
Hours /

Week
Credits Maximum Marks

CS2104PC Core
L T P C CIA SEE Total

3 0 0 3 30 70 100

Contact

classes: 60
Tutorial Classes : NIL Practical classes : NIL Total Classes :60

Prerequisites: No Prerequisites

Course Objectives:

• The purpose of the course is to introduce principles of computer organization and

the basic architectural concepts.

• It begins with basic organization, design and programming of a simple digital

computer and introduces simple register transfer language to specify various

computer operations.

• Topics include computer arithmetic, instruction set design, micro programmed

control unit,pipelining and vector processing, memory organization and I/O

systems and multiprocessors

Course Outcomes:

• Understand the basics of instructions sets and their impact on processor design.

• Demonstrate an understanding of the design of the functional units of a digital

computer system.

• Evaluate cost performance and design trade-offs in designing and constructing a

computer processor including memory.

• Design a pipeline for consistent execution of instructions with minimum hazards.

• Recognize and manipulate representations of numbers stored in digital computers

COURSE SYLLABUS

MODULE- I

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of

Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language,

Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro

operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers

Computer instructions, Timing and Control, Instruction cycle, Memory Reference

Instructions, Input – Output and Interrupt.

MODULE- II

Microprogrammed Control: Control memory, Address sequencing, micro program

example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats,

Addressing modes, Data Transfer and Manipulation, Program Control.

MODULE- III

Data Representation: Data types, Complements, Fixed Point Representation, Floating

Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division

Algorithms, Floating–point Arithmetic operations. Decimal Arithmetic unit, Decimal

Arithmetic operations.

MODULE- IV

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes

of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory,

Associate Memory, Cache Memory.

MODULE- V

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline,

Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor.

MultiProcessors: Characteristics of Multiprocessors, Interconnection Structures,

Interprocessor arbitration, Interprocessor communication and synchronization, cache

Coherence.

TEXT BOOK:

1. Computer System Architecture–M.MorisMano, Third Edition, Pearson/PHI.

REFERENCE BOOKS:

1. Computer Organization–Carl Hamacher, Zvonks Vranesic, Safea Zaky,

VthEdition, McGrawHill.

2. Computer Organization and Architecture – William Stallings Sixth Edition,

Pearson/PHI.

3. Structured Computer Organization – Andrew S.Tanenbaum, 4thEdition, PHI/Pearson.

4. List of COs (Action verbs as per Bloom's Taxonomy)

Course Name: (CS2104PC)

Course

Code.CO

No

Course Outcomes (CO’s)

At the end of the course student will be able to

CS2104PC Understand the basics of instructions sets and their impact on processor design.

CS2104PC Demonstrate an understanding of the design of the functional units of a digital computer

system.

CS2104PC Evaluate cost performance and design trade-offs in designing and constructing a

computer processor including memory.

CS2104PC Design a pipeline for consistent execution of instructions with minimum hazards.

CS2104PC Recognize and manipulate representations of numbers stored in digital computers

Course Outcome (CO)-Program Outcome (PO) Matrix: (2022-2023)

Course Name: CS2104PC

 PO1 PO[2] PO[3] PO[4] PO[5] PO[6] PO[7] PO[8] PO[9] PO[10] PO[11] PO[12]

CO[1] 2 2 3 2 3 2 2

CO[2] 2 3 1 1 2 3 2

CO[3] 1 2 2 2 1 1 3

CO[4] 2 1 3 2 2 2 2

CO[5] 2 2 1 3 3 1 2

 Mapping of course outcomes with PSO’s

CO PSO Mapping (2022-2023)

 PSO[1] PSO[2] PSO[3]

CO[1] 2 2

CO[2] 2

CO[3] 1 3

CO[4] 1 2

CO[5] 2 2 1

5. Nominal Rolls of the Students:

II B.Tech – I Sem (2021 Batch):

CSE-A :

S.NO ROLL NO NAME OF THE STUDENT

1 21X01A0501 AEDULLA NIKHIL

2 21X01A0502 ALAKUNTA ARJUN

3 21X01A0503 AKIRI HEMANTHSAI

4 21X01A0504 AMBALA HARSHITH KUMAR

5 21X01A0505 BANDARUPALLI SRI SAI HARSHITHA

6 21X01A0506 BADDAM PRASHANTH REDDY

7 21X01A0507 BADDAM SHIVA NANDU REDDY

8 21X01A0508 BADUGU SANJAY KUMAR

9 21X01A0509 BANATHI NITHIN

10 21X01A0510 CHAKALA SUNIL

11 21X01A0511 CHALLA UDAY KIRAN

12 21X01A0512 CHILUKURI SUNIL

13 21X01A0513 DAMERA RATHAN PAUL

14 21X01A0514 DHARAVATH GANESH

15 21X01A0515 EDLA SAKETH

16 21X01A0516 GADARI ANUDEEP

17 21X01A0517 GADDE AKHIL

18 21X01A0518 GAJAGATTLA PRAVEEN

19 21X01A0519 GANGARAMAINA NITHIN

20 21X01A0520 GANGIDI AKANKSHA

21 21X01A0521 GODEPALLY POOJA

22 21X01A0522 JADA NAVEEN

23 21X01A0523 JANAGAMA VAMSHIKRISHNA

24 21X01A0524 K SWETHA

25 21X01A0525 KALAKUNTLA BHANUPRASAD

26 21X01A0526 KAMALAPURAM MEGHANA

27 21X01A0527 KAMSALI SURYATEJA ACHARI

28 21X01A0528 KAMUNI SAI SHASHINDRA

29 21X01A0529 KOTTADA ELIZABETH RANI

30 21X01A0530 KURELLI AKSHAYA

31 21X01A0531 KURRA SATISH KUMAR

32 21X01A0532 LACHULAGARI VAMSHI KRISHNA

33 21X01A0533 LOKA PUNITH REDDY

34 21X01A0534 M INDUSREE KATYAYANI

35 21X01A0535 M SHIVARAM

36 21X01A0536 MACHA MANOJ KUMAR

37 21X01A0537 MADDINENI HEMA SUNDAR

38 21X01A0538 MADISHETTY GAYATHRI

39 21X01A0539 MALGARI SAMPATH REDDY

40 21X01A0540 MAMIDI RUCHITHA

41 21X01A0541 M.V.SURYA

42 21X01A0542 MARRI MONIKA REDDY

43 21X01A0543 N V MANOJ

44 21X01A0544 NAGULA RAVI KIRAN

45 21X01A0545 NAGIGE SAITHEJA

46 21X01A0546 ORAGANTI GANESH

47 21X01A0547 P VIJAY

48 21X01A0548 PADALWAR SHRUTHI GOUD

49 21X01A0549 PANTHAGANI RATHNAM

50 21X01A0550 PANJALA SANGEETHA GOUD

51 21X01A0551 PESSU SNEHITH REDDY

52 21X01A0552 R VEENA

53 21X01A0553 S R M R T RATHNAKUMAR

54 21X01A0554 SADANANDE SHRUTHI

55 21X01A0555 SAKETH KANTE

56 21X01A0556 SANGU KRANTHI

57 21X01A0557 TAHOORA RAFI

58 21X01A0558 THALLAPALLY MAHESH

59 21X01A0559 TEKULAPALLY TARUN REDDY

60 21X01A0560 UDGIRE SAMEER SHADUL

61 21X01A0561 VEMIREDDY SRAVANTHI

62 21X01A0562 VEMIREDDY LIKITHA REDDY

63 21X01A0563 YELDI SRIVYBHAV

64 21X01A0564 YANNE ADAM BASHA

65 21X01A0565 YELLAIAHGARI ANUSHA

66 21X01A0566 YEDDANDI MANISHA REDDY

67 21X01A0567 YEDMALA PRATHYUSHA

68 22X05A0501 BANJA POOJA

69 22X05A0502 BASAVARAJU DURGA BHANUPRASAD

70 22X05A0503 DEERAVATH GANESH NAYAK

CSE- B

1 21X01A0568 AMBIDI AKSHITHA

2 21X01A0569 AMDHIPOOR VARUNGOUD

3 21X01A0570 AREPALLI MANOJ

4 21X01A0571 BATHULA SAI KIRAN

5 21X01A0572 BOOJALA SOURYA

6 21X01A0573 BARKAM RISHIK

7 21X01A0574 BHEEMANATHI HARINI

8 21X01A0575 BHUKYA JASVANTH

9 21X01A0576 BODA DIVYASRI

10 21X01A0577 CHALLA NAGALAKSHMI

11 21X01A0578 CHINTHALAPELLY SAHASRA REEDY

12 21X01A0579 CHIRRA BALAKRISHNA REDDY

13 21X01A0580 DRAKSHARAM SOWMYA

14 21X01A0581 DUNGU SUBROTO CHAKRAVARTHY

15 21X01A0582 GOGULA LAXMI PRASANNA

16 21X01A0583 GOPISETTI VIVEK SAI

17 21X01A0584 GOSULA RAJKUMAR

18 21X01A0585 GUDA MEGHANA

19 21X01A0586 GOLI SAI KIRAN

20 21X01A0587 GOLKONDA PRANAY

21 21X01A0588 ISLAVATH ABHISHEK NAYAK

22 21X01A0589 JANGA MAHESH

23 21X01A0590 JARPULA SRAVAN KUMAR

24 21X01A0591 KANNABATHULA VENKAT SAI

25 21X01A0592 KANUGANTI HARI PRIYA

26 21X01A0593 KANUKULA STANLY

27 21X01A0594 KARINGU SHIVASHANKAR

28 21X01A0595 KARINGULA KAVYA SRI

29 21X01A0596 KASHISH PAREKH

30 21X01A0597 KOMMULA MARUTHI

31 21X01A0598
KOMPELLA VENKATA
SUBRAHMANYA SHARAT CHANDRA

32 21X01A0599 KONDE CHANDANA

33 21X01A05A0 MAMIDIPALLY ASHWITHA

34 21X01A05A1 MANDHA NAVEEN

35 21X01A05A2 MANTRI SOWMYA

36 21X01A05A3 MASKURI SINDHU

37 21X01A05A4 MIDDELA GOPI SAGAR

38 21X01A05A5 MOHAMMAD SHAREEF

39 21X01A05A6
MOHAMMED NAUSHAD
MOHIUDDIN

40 21X01A05A7 MATHYA HEPSIBHA

41 21X01A05A8 MUKUL REDDY ANAGANDULA

42 21X01A05A9 NARENDRAPURAPU TEJASWI

43 21X01A05B0 NEDUNURI AVINASH

44 21X01A05B1 NAKIRI VENKATESH

45 21X01A05B2 OTARKAR SAI KUMAR

46 21X01A05B3 PASHAM VAMSHI

47 21X01A05B4 PATHIREDDY ABINAYA

48 21X01A05B5 PATNAM VAMSHI

49 21X01A05B6 PODILAPU HARADEEP

50 21X01A05B7 POWER NAVEEN

51 21X01A05B8 RAPARTHI SAI KIRTHI

52 21X01A05B9 RAVALKOL PAVAN KUMAR

53 21X01A05C0 SAMALA VYSHNAVI

54 21X01A05C1 SAMPANGI VILAKAR

55 21X01A05C2 SANGAM SRINIDHI

56 21X01A05C3 SATTI GOWTHAM RAVINDRA REDDY

57 21X01A05C4 THATI BHARATH

58 21X01A05C5 TUNGALA NEERAJ

59 21X01A05C6 THALLURI CHAKRAVARTHI

60 21X01A05C7 VEMIREDDY RAM DINESH REDDY

61 21X01A05C8 VELPULA ABHINAV

62 21X01A05C9 VADLA LAXMI NARASIMHA

63 21X01A05D0 VELMA SAI CHARAN REDDY

64 21X01A05D1 YEMULA SRICHARAN

65 21X01A05D2 YENAGANDULA RAHUL

66 21X01A05D3 YELLAMMALA RAMYA

67 21X01A05D4 YERRA SANJANA

68 22X05A0504 DUSSA GANESH

69 22X05A0505 GATTU SAI PRAKASH

70 22X05A0506 GOLLAPALLI DINESH KUMAR GOUD

CSE- C

S.NO ROLL NO NAME OF THE STUDENT

1 21X01A05D5 ANEDLA AKSHITHA

2 21X01A05D6 ANUMAS MOUNIKA

3 21X01A05D7 ATLA SRUJANA

4 21X01A05D8 BADDIPADIGA DURGA BHAVANI

5 21X01A05D9 BOIN RAMU

6 21X01A05E0 BOLLEPELLY VIGNESH

7 21X01A05E1 BURSU KAMESHWARA RAO

8 21X01A05E2 BURUJU SIDDARTHA REDDY

9 21X01A05E3 CHEDE RUCHITHA

10 21X01A05E4 CHILUVERI JAISH

11 21X01A05E5 CHITAMANENI SAI TANUJ

12 21X01A05E6 CHITYALA KOUSHIK REDDY

13 21X01A05E7 CHUKKA RAJENDRA

14 21X01A05E8 DYAGARI PRIYA

15 21X01A05E9 GUGULOTH MADHU CHANDANA

16 21X01A05F0 GUMPULA NAVEEN

17 21X01A05F1 GUNDE RAKESH

18 21X01A05F2 GUNDEBOINA SNEHA

19 21X01A05F3 GUNTAKULAM SAI NIKITHA

20 21X01A05F4 GOURU SAI PAVAN

21 21X01A05F5

22 21X01A05F6 JILAKARA ADITHYA

23 21X01A05F7 JAKKULA GANGAMANI

24 21X01A05F8 KASUKURTHI SUPRIYA

25 21X01A05F9 KONDAIAHGARI MANISHA

26 21X01A05G0 KOTAGIRI PRANAY KUMAR

27 21X01A05G1 KOTTALA RAJITHA

28 21X01A05G2 KURRA ASRITHA

29 21X01A05G3 KUSUMA RAMYA

30 21X01A05G4 KAGGA GOPICHAND

31 21X01A05G5 KATARI BHAVANI PRASAD VARMA

32 21X01A05G6 KATTA ASHRITHA REDDY

33 21X01A05G7 MUMMANENI SREETHARATHNAM

34 21X01A05G8 MOULIK PATEL

35 21X01A05G9 MUDAVATH SANTHOSH

36 21X01A05H0 MUDDADA RAVI SANKAR

37 21X01A05H1 MULGI RUDRAKSHA

38 21X01A05H2 MUNFED ALI

39 21X01A05H3 MUTHYAM NIKSHITHA

40 21X01A05H4 MUTTUM UMESH

41 21X01A05H5 NIMMAKANTI MADHUSAGAR

42 21X01A05H6 NIRUDI DINESH

43 21X01A05H7 NIRUDI VAISHNAVI

44 21X01A05H8 NIMMALA MANOJ

45 21X01A05H9 BOLLA SRIKAR

46 21X01A05I0 PAYYAVULA DINESH KUMAR

47 21X01A05I1 PERUPOGU SANDEEP

48 21X01A05I2 PS VENNALA VEDASHINEE

49 21X01A05I3 PUPPALA RISHIKESH

50 21X01A05I4 ROUTHU PRABHAKAR

51 21X01A05I5 SHAIK AKASH

52 21X01A05I6 SHAIK SOHEL

53 21X01A05I7 SIDDIQUA TABASSUM

54 21X01A05I8 SIRIMALLA SIRI CHANDANA

55 21X01A05I9 SIRIPURAM VINAY KUMAR

56 21X01A05J0 SHIVARATHRI VIGNESHWAR

57 21X01A05J1 SNEHA TRIPATHY

58 21X01A05J2 TURKANI LALAPPA

59 21X01A05J3 THOTAKURA SHRAVYA

60 21X01A05J4 KADMURI KAUSHIK KUMAR VARMA

61 22X05A0507 GSANDEEP

62 22X05A0508 KAGNALI NANDINI

63 22X05A0509 KAITHALAPURAM HEMANTH

64 22X05A0510 KATAM ASHWINI

65 22X05A0511 KORPATHI HEMALATHA

66 22X05A0512 MAHESHWARAM JITHENDHER

67 22X05A0513 PODILA NAVA BHARATH KUMAR

68 22X05A0514 R SAI VARDHAN

69 22X05A0515 RODDA BHANU PRASAD

70 22X05A0516 S MANJUNADHA

71 22X05A0517 SATHU AJAY REDDY

72 22X05A0518 SHAIK SURAJ BABA

73 22X05A0519 SINAMGARAM CHANDU YADAV

74 22X05A0520 THUPAKULA VAMSHI YADAV

6. TIME TABLE (2022-2023)

7. LECTURE PLAN (2022-2023)

S.No
Tentative

Date

Topics as per

Syllabus

Topic Actually

 Covered

Suggested

Book

Method of

Teaching

BB/PPT

UNIT - I

1 29/09/2022

Digital Computers:

Introduction

Digital

Computers:

Introduction,
T1 BB/PPT

2 30/09/2022

Block diagram of

Digital Computer

Block diagram of

Digital Computer T1

BB/PPT

3 10/10/2022

Definition of

Computer

Organization

Definition of

Computer

Organization

T1

BB/PPT

4 11/10/2022

Computer Design and

Computer

Architecture.

Computer Design

and Computer

Architecture.
T1

BB/PPT

5 11/10/2022
Register Transfer Register Transfer

T1
BB/PPT

Language and Micro

operations

Language and

Micro operations

6
13/10/2022 Register Transfer

language,

Register Transfer

language,
T1

BB/PPT

7
14/10/2022

Register Transfer Register Transfer T1
BB/PPT

8

17/10/2022 Bus and memory

transfers

Bus and memory

transfers T1

BB/PPT

9

18/10/2022 Arithmetic Micro

operations

Arithmetic Micro

operations T1

BB/PPT

10
18/10/2022 logic micro

operations

shift micro

operations T1
BB/PPT

11

20/10/2022 shift micro operations shift micro

operations T1

BB/PPT

12

21/10/2022 Arithmetic logic shift

unit

Arithmetic logic

shift unit T1

BB/PPT

13

25/10/2022 Basic Computer

Organization and

Design

Basic Computer

Organization and

Design

T1

BB/PPT

14

25/10/2022
Instruction codes,

Computer Registers

Computer

instructions,

Instruction codes,

Computer

Registers

Computer

instructions,

T1

BB/PPT

15

27/10/2022
Timing and Control,

Instruction cycle,

Timing and

Control,

Instruction cycle,
T1

BB/PPT

16

28/10/2022

Memory Reference

Instructions, Input –

Output and Interrupt.

Memory

Reference

Instructions, Input

– Output and

Interrupt.

T1

BB/PPT

 UNIT - II

17 31/10/2022

Micro programmed

Control: Control

memory

Micro

programmed

Control:

Control

memory,

T1

BB/PPT

18 01/11/2022

Address

sequencing,

Address

sequencing

,
T1

BB/PPT

19 01/11/2022
micro program

example

micro program

example
T1

BB/PPT

20 03/11/2022 design of control unit
design of

control unit
T1

BB/PPT

21

04/11/2022
Central Processing

Unit: General Register

Organization

Central

Processing

Unit: General

Register

Organization

T1

BB/PPT

22

07/11/2022

Instruction Formats,

Addressing modes

Instruction

Formats,

Addressing

modes

T1

BB/PPT

23

10/11/2022

Data Transfer and

Manipulation,

Program Control.

Data

Transfer

and

Manipulati

on,

Program

Control.

T1

BB/PPT

UNIT - III

24

11/11/2022
Data Representation:

Data types,

Complements

Data

Representation:

Data types,

Complements

T1

BB/PPT

25
14/11/2022 Fixed Point

Representation

Fixed Point

Representation
T1

BB/PPT

26
15/11/2022 , Floating Point

Representation

, Floating Point

Representation
T1

BB/PPT

27

15/11/2022

Computer

Arithmetic:

Addition and

subtraction

Computer

Arithmetic

: Addition

and

subtraction

T1

BB/PPT

28
17/11/2022 multiplication

Algorithms

multiplication

Algorithms
T1

BB/PPT

29
18/11/2022 multiplication

Algorithms

multiplication

Algorithms
T1

BB/PPT

30
21/11/2022 multiplication

Algorithms

multiplication

Algorithms
T1

BB/PPT

31
22/11/2022

Division Algorithms
Division

Algorithms
T1

BB/PPT

32

22/11/2022

Floating–point

Arithmetic operations

Floating–point

Arithmetic

operations

T1

BB/PPT

33
24/11/2022 Decimal Arithmetic

unit

Decimal

Arithmetic unit
T1

BB/PPT

34

25/11/2022

Decimal Arithmetic

operations

Decimal

Arithmetic

operations

T1

BB/PPT

35

05/12/2022
Decimal Arithmetic

operations

Decimal

Arithmetic

operations

T1

BB/PPT

39

06/12/2022

Decimal Arithmetic

operations

Decimal

Arithmetic

operations

T1

BB/PPT

 UNIT - IV

40

06/12/2022

Input-Output

Organization:

Input-Output

Interface

Input-

Output

Organizati

on: Input-

Output

Interface

T1

BB/PPT

41
08/12/2022 Asynchronous data

transfer

Asynchronous

data transfer
T1

BB/PPT

42
09/12/2022

Modes of Transfer,

Modes of

Transfer,
T1

BB/PPT

43
12/12/2022

Priority Interrupt
Priority

Interrupt
T1

BB/PPT

44
13/12/2022 Direct memory

Access.

Direct memory

Access.
T1

BB/PPT

45

13/12/2022
Memory

Organization:

Memory Hierarchy

Memory

Organization:

Memory

Hierarchy

T1

BB/PPT

46
15/12/2022

Main Memory,
Main

Memory,
T1

BB/PPT

47
16/12/2022

Auxiliary memory
Auxiliary

memory
T1

BB/PPT

48
19/12/2022

Associate Memory,

Associate

Memory,
T1

BB/PPT

49
20/12/2022

Cache Memory.

Cache

Memory.
T1

BB/PPT

UNIT V

50
22/12/2022 Reduced Instruction

Set Computer: CISC

Reduced

Instruction Set
T1

BB/PPT

Characteristics, Computer: CISC

Characteristics,

51
23/12/2022 RISC

Characteristics.

RISC

Characteristics.
T1

BB/PPT

52

26/12/2022
Pipeline and Vector

Processing: Parallel

Processing

Pipeline and

Vector

Processing:

Parallel

Processing

T1

BB/PPT

53

27/12/2022
Pipelining,

Arithmetic Pipeline,

Pipelining,

Arithmetic

Pipeline,

T1

BB/PPT

54
29/12/2022

Instruction Pipeline
Instruction

Pipeline
T1

BB/PPT

55
02/01/2023

RISC Pipeline RISC Pipeline T1
BB/PPT

56

03/01/2023
Vector Processing,

Vector

Processing, T1

BB/PPT

57

05/01/2023
Vector Processing

Vector

Processing T1

BB/PPT

58
02/01/2023

Array Processor. Array Processor. T1
BB/PPT

59
06/01/2023

Array Processor. Array Processor. T1
BB/PPT

60

09/01/2023
MultiProcessors:

Characteristics of

Multiprocessors

MultiProcessors:

Characteristics

of

Multiprocessors

T1

BB/PPT

61
10/01/2023 Interconnection

Structures

Interconnection

Structures
T1

BB/PPT

62
12/01/2023 Interconnection

Structures

Interconnection

Structures
T1

BB/PPT

63
16/01/2023 Interprocessor

arbitration

Interprocessor

arbitration
T1

BB/PPT

64
17/01/2023 Interprocessor

arbitration

Interprocessor

arbitration
T1

BB/PPT

65

19/01/2023
Interprocessor

communication and

synchronization,

cache Coherence.

Interprocessor

communication

and

synchronization,

cache

Coherence.

T1

BB/PPT

66
20/01/2023

Unit Test 1 Unit Test 1 T1
BB/PPT

67
23/01/2023 Unit Test 2 Unit Test 2

68
24/01/2023 Unit Test 3 Unit Test 3

69
24/01/2023 Unit Test 4 Unit Test 4

70
27/01/2023 Unit Test 5 Unit Test 5

TEXT BOOK:

 1. Computer System Architecture–M.MorisMano, Third Edition, Pearson/PHI.

REFERENCE BOOKS:

1. Computer Organization–Carl Hamacher, Zvonks Vranesic, Safea Zaky, VthEdition,

McGrawHill.

2. Computer Organization and Architecture – William Stallings Sixth Edition, Pearson/PHI.

3. Structured Computer Organization – Andrew S.Tanenbaum, 4thEdition, PHI/Pearson.

8. University Questions / Question Bank

Unit 1:

1. What is RTL?

2. What is Micro operation? Give examples.

3. Define Computer Architecture

4.Define Computer Organization

5. Show the block diagram of the hard ware that implements the following register transfer

statement: yT2: R2 -R1,R1---R2.

6. What are the basic symbols for register transfers.

7. What is control function?

8. What is a bus? What are different buses in a CPU?

9.. What is memory and what are the operations of memory.

10.Give RTL statements for memory transfers.

11. Explain about the following operation with an example.

a. arithmetic micro operation

 b. Logic micro operation

 c. shift micro operation

12.Draw the circuit diagram of 4-bit binary adder.

13.Draw the circuit diagram of 4-bit adder/subtractor.

14.Draw the circuit diagram of 4-bit binary incrementer.

15.Draw the circuit diagram of 4-bit binary decrementer.

16.What is an arithmetic circuit ?

17. List and the applications of logic micro operations.

18.Define selective set with an example.

19.Define selectice clear with an example.

20.Define selective complement with an exam ple.

21. Define selective mask with an example.

22. Discuss an arithmetic shift micro operation.

23.Explain the logical shift micro operation.

24.What is circular shift micro operation.

25.Define effective address.

Unit 2:

1. What are the ways of designing a control unit? Explain

2. Distinguish between hardwired and micro programmed control.

3. What size of decoder is used for designing of control unit?

4. What is the purpose of control memory?

7. What is the purpose of CAR(control address register) ,CDR(control data register). And SBR

(subroutine register)

8. What is the function of micro program sequencer.

9. What is the purpose of pipe line register?

10. What is a micro routine OR what is control store?

11. Define mapping process in address sequencing.

12. Define conditional branching.

13. What is branch logic hardware?

14. Draw the diagram for mapping instruction code to microinstruction address.

15. Give the micro instruction code format.

16. What is a condition field?

17. Give some symbols and micro instruction code for micro instruction fields.

18. Define the functions of JMP, CALL, RET, MAP instructions.

19. What are the differences between the main memory and control memory?

20. How many micro instructions are needed for Fetch and decode routine.

21. What are the address sequencing capabilities required in a control memory.

22. What are the different branching techniques used in control unit.

23. What is vertical organization and horizontal organization?

24. What is a computer instruction?

25. What is an instruct ion code?

26. What is an operat ion code?

27. Define the effect ive address (EA)

28. What is a stack?

29. What is a stack pointer?

30. What are the operat ions of a stack?

31. What is push and pop?

32. What are the types of stack?

33. What is the polish notation?

34. What is the reverse polish notat ion (RPN)?

35. What are the fields of an instruct ion format?

36. What is a register address?

37. What are the types of CPU organizat ions?

38. What is an addressing mode?

39. What is the use of addressing modes in computers?

Unit 3:

1. Explain the data types and complements.

2. How floating point numbers are represented? Give example.

3. Discuss the floating Point representation.

4. What is a hexadecimal number system?

5. What is the role of the Accumulator?

6. Perform the subtraction with the following unsigned binary number bytaking the 2’s compliment

of the subtrahend

11010-10000

7. What is the advantage of using Booth algorithm?

8. Explain the functions of CPU.

9. What kind of number system does computer use?

10. Write overflow conditions for addition and subtraction.

11.Give a brief note on Division Algorithms.

12. Give the format of floating point numbers.

13. Draw the diagram for hardware for signed magnitude addition and subtraction.

14. What is the need of Booth’s multiplication algorithm.

15. Give the procedure for Booth’s multiplication algorithm.

16. What is 2-bit by 2-bit array multiplier.

17. Explain Floating–point Arithmetic operations.

18. Discuss the decimal Arithmetic operations

Unit 4:

1.Give the block diagram of interface between a processor and peripheral devices and explain it

operations.

2.Explain Daisy-chaining method of establishing priority with the help of diagram.

3.List four peripherals devices that produce an acceptable output for a person to understand.

4.Discuss the different methods of data transfer between the CPU and I/O devices.

5.Design parallel priority interrupt hardware for a system with eight interrupts sources.

6.How many characters per second can be transmitted over a 1200 baud line in each of the following

modes?

a)Synchronous serial transmission

b)Asynchronous serial transmission with two stop bits.

c)Asynchronous serial transmission with one stop bits

7.Why are the read and write control lines in a DMA controller bidirectional? Under what condition

and for what purpose are they are they used as inputs? Under what condition and for what purpose

are they are they used as outputs?

8. The access time of a cache memory is 100 ns and that of main memory is 1000 ns. It is estimated

that 80% of the memory requests are for read and the remaining 20% are for write. The hit ratio for

read accesses only is 0.9. A write-through procedure is used.

(i). What is the average access time of the system considering only memory read cycles?

(ii). What is the average access time of the system for both read and write requests?

 Unit 5:

1.Compare and contrast

i. Multiprocessors and multicomputer systems.

ii. Tightly coupled and loosely coupled multiprocessors.

iii. Synchronous and asynchronous bus

2.Differentiate between parallel processing and pipeline processing with suitable

examples.

3.Construct a diagram for a 4 x 4 omega switching network. Show the switch setting

required to connect input 3 to output 1.

4.“Multiprocessing can improve performance by decomposing a program into parallel

executable tasks.” Explain how this is achieved.

5.What are the various physical forms available for establishing an interconnection

network? Explain

6.Draw and explain the structure of general purpose multicomputer.

7.Explain the characteristics of CISC and RISC.

8.What is an instruction pipeline? What are the difficulties that cause the instruction

pipeline to deviate from its normal operation?

9.Draw a space time diagram for six segment pipeline showing the time it takes to

process eight tasks.

10Explain four possible hardware schemes that can be used in an instruction pipeline in

order to minimize the performance degradation caused by instruction branching.

11.Consider the multiplication of two 40*40 matrices using a vector processor.

a) .How many product terms are there in each inner product and how many inner

products must be evaluated?

b) How many multiply add operations are needed to calculate the product matrix?

12.Explain the parallel processing architecture and its uses.

9. Old Question Papers:

10. Question Papers (CIA & SEE)

Mid exam question papers:

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

II-B.TECH I SEMESTER – I MID EXAMINATION

SET - B

SUBJECT: Computer Organization and Architecture DATE:
MAX. MARKS: 10 TIME: 2.00PM-3.30PM

ANSWER ANY TWO QUESTIONS 2*5=10M

S.No Question CO BL POs

1. a) Draw the figure to show how functional units are interconnected

using a bus and explain.

1 3 PO1,PO3,PO11

 b) List and explain the functions of various components 1 2 PO2,PO2,PO5

2. a) Explain about Stack Organization in detail. 1 4 PO3,PO1,PO12

 b) Discuss the generic Instruction types present in a computer

system.

1 3 PO2,PO5,PO4

3 a) Describe the Data Transfer and Manipulation. 1 2 PO2,PO4,PO5

 b) Explain the Instruction Formats. 2 3 PO1,PO3,PO6

4. a) Elaborate the Floating Point Representation. 2 4 PO1,PO2,PO5

 b) Illustrate the Fixed Point Representation. 2 2 PO3,PO4,PO12

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

II-B.TECH I SEMESTER – II MID EXAMINATION

SET - B

SUBJECT: Computer Organization and Architecture DATE:
MAX. MARKS: 10 TIME: 10.00AM-11.30PM

ANSWER ANY TWO QUESTIONS 2*5=10M

S.No Question CO BL POs

1. a) Compare horizontal and vertical organization. Give their

advantages and disadvantages.

3 3 PO1,PO2,PO12

 b) What do you understand by symbolic micro instruction? Give the

typical field distribution of a symbolic micro instruction and

explain the significance of each field.

3 2 PO2,PO1,PO5

2. a) When a device interrupt occurs, how does the processor

determine which device issued the interrupt? Explain.

4 4 PO3,PO2,PO11

 b) Explain the Decimal Arithmetic unit. 4 3 PO1,PO5,PO4

3 a) Discuss the CISC Characteristics. 4 2 PO2,PO4,PO6

 b) List and explain the RISC Characteristics. 5 3 PO2,PO4,PO6

4. a) Elaborate the Vector Processing and Array Processor. 5 4 PO1,PO2,PO5

 b) Discuss the Characteristics of Multiprocessors. 5 2 PO3,PO4,PO12

11. Tutorial Sheets

12. I. Assignment Questions (2022-2023)

DEPARTMENT OF CSE

II-B.TECH I SEMESTER- ASSIGNMENT: I

SUBJECT: COMPUTER ORGANIZATION AND ARCHITECTURE

S.No Question CO BL POs

1. a) Define computer. Specify the different types of computers and

their characteristics.

1 4 PO2,PO3,PO11

 b) Explain how the floating-point numbers are represented and used

in digital arithmetic operations. Give an example.

1 3 PO2,PO3,PO5

2. a) What is a bus? Draw the figure to show how functional units are

interconnected using a bus and explain.

1 2 PO4,PO2,PO12

 b) List and explain the functions of various components 1 3 PO1,PO5,PO6

3 a) Explain about Stack Organization in detail. 1 2 PO2,PO4,PO5

 b) Discuss the generic Instruction types present in a computer

system.

2 4 PO4,PO3,PO6

4. a) Describe the Data Transfer and Manipulation. 2 4 PO3,PO2,PO6

 b) Explain the Instruction Formats. 2 2 PO3,PO4,PO11

5 a) Elaborate the Floating Point Representation. 3 2 PO4,PO3,PO12

 b) Illustrate the Fixed Point Representation. 3 3 PO2,PO4,PO7

DEPARTMENT OF CSE

II-B.TECH I SEMESTER- ASSIGNMENT: 2

SUBJECT: COMPUTER ORGANIZATION AND ARCHITECTURE

S.No Question CO BL POs

1. a) When a device interrupt occurs, how does the processor

determine which device issued the interrupt? Explain.

3 2 PO2,PO2,PO11

 b) A DMA module is transferring the characters to memory using

cycle stealing, from a device transmitting at 9600 bps. The

processor is fetching instructions at the rate of 1MIPS. By how

much will the processor be slowed down due to DMA activity?

3 2 PO2,PO2,PO5

2. a) Compare horizontal and vertical organization. Give their

advantages and disadvantages.

3 3 PO4,PO2,PO12

 b) What do you understand by symbolic micro instruction? Give the

typical field distribution of a symbolic micro instruction and

explain the significance of each field.

4 3 PO1,PO5,PO6

3 a) When a device interrupt occurs, how does the processor

determine which device issued the interrupt? Explain.

4 2 PO2,PO4,PO5

 b) Explain the Decimal Arithmetic unit. 4 3 PO4,PO3,PO6

4. a) Discuss the CISC Characteristics. 4 4 PO3,PO2,PO6

 b) List and explain the RISC Characteristics. 5 2 PO3,PO4,PO11

5 a) Elaborate the Vector Processing and Array Processor. 5 2 PO4,PO3,PO12

 b) Discuss the Characteristics of Multiprocessors. 5 3 PO2,PO4,PO7

I. One Day Online workshop on Computer Organization on 28/12/2022 by Dr. Vijaya

Bhaskar Reddy , Professor, LBRCE,NTR District

II. One Day Guest Lecturer on Architecture on 2/01/2023 by Dr. J. Kiran Kumar , IBM,

Hyderabad .

III. Case Tools:

Thread Level Parallelism – SMT and CMP:

The objectives of this module are to discuss the drawbacks of ILP and the need for exploring other

types of parallelism available in application programs and exploit them. We will discuss what is

meant by thread level parallelism and discuss the concepts of Simultaneous Multi Threading and

Chip Multi Processors.

 So far, we have looked at various hardware and software techniques to exploit ILP. The ideal

CPI that we can expect in a pipelined implementation is only 1. We looked at different techniques to

avoid or minimize the stalls associated with the various hazards. The performance of a pipelined

implementation can be improved by deepening the pipeline or widening the pipeline. Deepening the

pipeline increases the number of in-flight instructions and decreases the gap between successive

independent instructions. However, it increases the gap between dependent instructions. There is an

optimal pipeline depth depending on the ILP in a program and it is a design issue. It may be tough to

pipeline some structures and there may be an increase in the cost of bypassing. Increasing the width

of the pipeline, as in the case of multiple issue processors also has its own problems and difficulties.

It may be difficult to find more than a few, say, four independent instructions to issue and it may be

difficult to fetch more than six instructions and there is also an increase in the number of ports per

structure.

 In order to reduce the stalls associated with fetch, we may have to employ better branch

prediction methods with novel ways to index/update and avoid aliasing and also cascade branch

predictors. The other option is to use a trace cache. Instead of limiting the instructions in a static

cache block to spatial locality, a trace cache finds a dynamic sequence of instructions including

taken branches to load into a cache block. The name comes from the cache blocks containing

dynamic traces of the executed instructions as determined by the CPU rather than containing static

sequences of instructions as determined by memory. Hence, the branch prediction is folded into

cache, and must be validated along with the addresses to have a valid fetch. The Intel Netburst

microarchitecture, which is the foundation of the Pentium 4 and its successors, uses a trace cache.

The trace cache has a lot of shortcomings, but is very useful in handling the limitations of the fetch

unit. In Intel processors, the trace cache stores the pre-decoded instructions.

Inspite of all the hardware and software techniques employed to exploit ILP, there is a limit to how

much we can exploit ILP. First of all, there is a limitation with the hardware that we use. The

number of virtual registers that we actually have is limited, not infinite, to do the renaming process.

The branch predictors and jump predictors that we use may not be perfect. Similarly, we may not be

able to resolve memory address disambiguities always. In short, we do not have an idealistic

processor, limited only by true data dependences and without any control, WAR and WAW hazards.

Doubling issue rates above today’s 3-6 instructions per clock, say to 6 to 12 instructions, probably

requires a processor to issue 3 or 4 data memory accesses per cycle, resolve 2 or 3 branches per

cycle, rename and access more than 20 registers per cycle, and fetch 12 to 24 instructions per cycle.

The complexity of implementing these capabilities is likely to mean sacrifices in the maximum clock

rate. For example, one of the widest issue processors is the Itanium 2, but it also has the slowest

clock rate, despite the fact that it consumes the most power. Most techniques for increasing

performance also increase the power consumption. Multiple issue processors techniques all are

energy inefficient. Issuing multiple instructions incurs some overhead in logic that grows faster than

the growth in issue rate. There is also a growing gap between the peak issue rates and sustained

performance, which leads to increasing energy per unit of performance.

Exploiting other types of parallelism: The above discussion clearly shows that ILP can be quite

limited or hard to exploit in some applications. More importantly, it may lead to increase in power

consumption. Furthermore, there may be significant parallelism occurring naturally at a higher level

in the application that cannot be exploited with the approaches used to exploit ILP. For example, an

online transaction processing system has natural parallelism among the multiple queries and updates

that are presented by requests. These queries and updates can be processed mostly in parallel, since

they are largely independent of one another. This higher level parallelism is called thread level

parallelism because it is logically structured as separate threads of execution. A thread is a separate

process with its own instructions and data. A thread may represent a process that is part of a parallel

program consisting of multiple processes, or it may represent an independent program on its own.

Each thread has all the state (instructions, data, PC, register state, and so on) necessary to allow it to

execute. Unlike instruction level parallelism, which exploits implicit parallel operations within a

loop or straight-line code segment, thread level parallelism is explicitly represented by the use of

multiple threads of execution that are inherently parallel.

Thread level parallelism is an important alternative to instruction level parallelism, primarily

because it could be more cost-effective to exploit than instruction level parallelism. There are many

important applications where thread level parallelism occurs naturally, as it does in many server

applications. Similarly, a number of applications naturally exploit data level parallelism, where the

same operation can be performed on multiple data. We shall discuss about exploiting data level

parallelism in a later module.

Since ILP and TLP exploit two different types of parallel structure in a program, it is a natural

option to combine these two types of parallelism. The datapath that has already been designed has a

number of functional units remaining idle because of the insufficient ILP caused by stalls and

dependences. This can be utilized to exploit TLP and thus make the functional units busy. There are

predominantly two strategies for exploiting TLP along with ILP – Multithreading and its variants,

viz., Simultaneous Multi Threading (SMT) and Chip Multi Processors (CMP). In the case of SMT,

multiple threads share the same large processor which reduces under-utilization and does efficient

resource allocation. In the case of CMPs, each thread executes on its own mini processor, which

results in a simple design and low interference between threads. We will discuss about both these

approaches.

Multithreading: Multithreading allows multiple threads to share the functional units of a single

processor in an overlapping fashion. In order to enable this, the processor duplicates the independent

state of each thread – a separate copy of the register file, a separate PC, and a separate page table.

The memory itself can be shared through the virtual memory mechanisms, which already support

multiprogramming. In addition, the hardware must support the ability to change to a different thread

relatively quickly; in particular, a thread switch should be much more efficient than a process switch,

which typically requires hundreds to thousands of processor cycles.

There are two main approaches to multithreading – Fine grained and Coarse grained. Fine-

grained multithreading switches between threads on each instruction, causing the execution of

multiple threads to be interleaved. This interleaving is normally done in a round-robin fashion,

skipping any threads that are stalled at that time. In order to support this, the CPU must be able to

switch threads on every clock cycle. The main advantage of fine-grained multithreading is that it can

hide the throughput losses that arise from both short and long stalls, since instructions from other

threads can be executed when one thread stalls. But it slows down the execution of the individual

threads, since a thread that is ready to execute without stalls will be delayed by instructions from

other threads.

Coarse-grained multithreading switches threads only on costly stalls, such as level two cache

misses. This allows some time for thread switching and is much less likely to slow the processor

down, since instructions from other threads will only be issued, when a thread encounters a costly

stall. Coarse-grained multithreading, however, is limited in its ability to overcome throughput losses,

especially from shorter stalls. This limitation arises from the pipeline start-up costs of coarse-grain

multithreading. Because a CPU with coarse-grained multithreading issues instructions from a single

thread, when a stall occurs, the pipeline must be emptied or frozen and then fill in instructions from

the new thread. Because of this start-up overhead, coarse-grained multithreading is much more

useful for reducing the penalty of high cost stalls, where pipeline refill is negligible compared to the

stall time.

Simultaneous Multithreading: This is a variant on multithreading. When we only issue

instructions from one thread, there may not be enough parallelism available and all the functional

units may not be used. Instead, if we issue instructions from multiple threads in the same clock

cycle, we will be able to better utilize the functional units. This is the concept of simultaneous

multithreading. We try to use the resources of a multiple issue, dynamically scheduled superscalar to

exploit TLP on top of ILP. The dynamically scheduled processor already has many HW mechanisms

to support multithreading –

 a large set of virtual registers that can be used to hold the register sets of independent threads

 register renaming to provide unique register identifiers, so that instructions from multiple threads can

be mixed in the data-path without confusing sources and destinations across threads and

 out-of-order completion that allows the threads to execute out of order, and get better utilization of

the HW.

Thus, with register renaming and dynamic scheduling, multiple instructions from independent

threads can be issued without regard to the dependences among them. The resolution of the

dependences will be handled by the dynamic scheduling capability. We need to add a renaming table

per thread and keep separate PCs. The independent commitment of each thread can be supported by

logically keeping a separate reorder buffer for each thread. Figure 24.1 shows the difference between

the various techniques.

In the superscalar approach without multithreading support, the number of instructions issued per

clock cycle is dependent on the ILP available. Additionally, a major stall, such as an instruction

cache miss, can leave the entire processor idle. In the fine-grained case, the interleaving of threads

eliminates fully empty slots. Because only one thread issues instructions in a given clock cycle,

however, ILP limitations still lead to a significant number of idle slots within individual clock

cycles. In the coarse-grained multithreaded superscalar, the long stalls are partially hidden by

switching to another thread that uses the resources of the processor. Although this reduces the

number of completely idle clock cycles, within each clock cycle, the ILP limitations still lead to idle

cycles. Furthermore, in a coarse-grained multithreaded processor, since thread switching only occurs

when there is a stall and the new thread has a start-up period, there are likely to be some fully idle

cycles. In the SMT case, TLP and ILP are exploited simultaneously, with multiple threads using the

issue slots in a single clock cycle. Ideally, the issue slot usage is limited by imbalances in the

resource needs and resource availability over multiple threads. In practice, other factors—including

how many active threads are considered, finite limitations on buffers, the ability to fetch enough

instructions from multiple threads, and practical limitations of what instruction combinations can

issue from one thread and from multiple threads—can also restrict how many slots are used.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 1 Dr. Nidamanuru Srinivasa Rao, Associate Professor

13. Subject notes/PPTs/self study material

UNIT 1:

Digital Computers: Introduction, Block diagram of Digital Computer, Definition of Computer

Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register

Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift

micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer

instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input –

Output and Interrupt.

DIGITAL COMPUTERS

A Digital computer can be considered as a digital system that performs various computational tasks.

The first electronic digital computer was developed in the late 1940s and was used primarily for

numerical computations. By convention, the digital computers use the binary number system, which

has two digits: 0 and 1. A binary digit is called a bit. A computer system is subdivided into two

functional entities: Hardware and Software.

The hardware consists of all the electronic components and electromechanical devices that comprise

the physical entity of the device. The software of the computer consists of the instructions and data

that the computer manipulates to perform various data-processing tasks.

o The Central Processing Unit (CPU) contains an arithmetic and logic unit for manipulating

data, a number of registers for storing data, and a control circuit for fetching and executing

instructions.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 2 Dr. Nidamanuru Srinivasa Rao, Associate Professor

o The memory unit of a digital computer contains storage for instructions and data.

o The Random Access Memory (RAM) for real-time processing of the data.

o The Input-Output devices for generating inputs from the user and displaying the final results

to the user.

o The Input-Output devices connected to the computer include the keyboard, mouse, terminals,

magnetic disk drives, and other communication devices.

BASIC COMPUTER ORGANIZATION:

Most of the computer systems found in automobiles and consumer appliances to personal computers

and main frames have some basic organization. The basic computer organization has three main

components:

 CPU

 Memory subsystem

 I/O subsystem.

The generic organization of these components is shown in the figure below.

Computer organization: Computer organization is the knowing, what the functional components of

a computer are, how they work and how their performance is measured and optimized. Computer

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 3 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Organization refers to the level of abstraction above the digital logic level, but below the operating

system level.

Computer design and architecture:

Computer design is concerned with the determination of what hardware should be used and how the

parts should be connected. This aspect of computer hardware is sometimes referred to as computer

implementation. Computer architecture is concerned with the structure and behavior of the computer

as seen by the user.

Register Transfer Language and Micro Operations:

Register Transfer language:

 Digital systems are composed of modules that are constructed from digital components, such as

registers, decoders, arithmetic elements, and control logic

 The modules are interconnected with common data and control paths to form a digital computer

system

 The operations executed on data stored in registers are called micro operations

 A micro operation is an elementary operation performed on the information stored in one or more

registers

 Examples are shift, count, clear, and load

 Some of the digital components from before are registers that implement micro operations

 The internal hardware organization of a digital computer is best defined by specifying

o The set of registers it contains and their functions

o The sequence of micro operations performed on the binary information stored

o The control that initiates the sequence of micro operations

 Use symbols, rather than words, to specify the sequence of micro operations

 The symbolic notation used is called a register transfer language

 A programming language is a procedure for writing symbols to specify a given computational

process

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 4 Dr. Nidamanuru Srinivasa Rao, Associate Professor

 Define symbols for various types of micro operations and describe associated hardware that can

implement the micro operations

Register Transfer

 Designate computer registers by capital letters to denote its function

 The register that holds an address for the memory unit is called MAR

 The program counter register is called PC.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 5 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 6 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 7 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 8 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 9 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 10 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 11 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 12 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 13 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Logic Micro operations

 Logic operations specify binary operations for strings of bits stored in registers and treat each bit

separately

 Example: the XOR of R1 and R2 is symbolized by

P: R1 R1 ⊕ R2

 Example: R1 = 1010 and R2 = 1100

1010 Content of R1

1100 Content of R2

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 14 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 15 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 16 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 17 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 18 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 19 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Arithmetic Logic Shift Unit

 The arithmetic logic unit (ALU) is a common operational unit connected to a number of storage

registers

 To perform a microoperation, the contents of specified registers are placed in the inputs of the

ALU

 The ALU performs an operation and the result is then transferred to a destination register

 The ALU is a combinational circuit so that the entire register transfer operation from the source

registers through the ALU and into the destination register can be performed during one clock pulse

period.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 20 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 21 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Instruction Formats:

A computer will usually have a variety of instruction code formats. It is the function of the control

unit within the CPU to interpret each instruction code and provide the necessary control functions

needed to process the instruction.

The format of an instruction is usually depicted in a rectangular box symbolizing the bits of the

instruction as they appear in memory words or in a control register. The bits of the instruction are

divided into groups called fields. The most common fields found in instruction formats are:

1 An operation code field that specifies the operation to be performed.

2. An address field that designates a memory address or a processor registers.

3. A mode field that specifies the way the operand or the effective address is determined.

Other special fields are sometimes employed under certain circumstances, as for example a field that

gives the number of shifts in a shift-type instruction.

The operation code field of an instruction is a group of bits that define various processor operations,

such as add, subtract, complement, and shift.

The bits that define the mode field of an instruction code specify a variety of alternatives for

choosing the operands from the given address.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 22 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Operations specified by computer instructions are executed on some data stored in memory or

processor registers, Operands residing in processor registers are specified with a register address. A

register address is a binary number of k bits that defines one of 2k registers in the CPU. Thus a CPU

with 16 processor registers R0 through R15 will have a register address field of four bits. The binary

number 0101, for example, will designate register R5. Computers may have instructions of several

different lengths containing varying number of addresses. The number of address fields in the

instruction format of a computer depends on the internal organization of its registers. Most

computers fall into one of three types of CPU organizations: 1 Single accumulator organization. 2

General register organization. 3 Stack organization. All operations are performed with an implied

accumulator register. The instruction format in this type of computer uses one address field. For

example, the instruction that specifies an arithmetic addition is defined by an assembly language

instruction as ADD. Where X is the address of the operand. The ADD instruction in this case results

in the operation AC ← AC + M[X]. AC is the accumulator register and M[X] symbolizes the

memory word located at address X. An example of a general register type of organization was

presented in Fig. 7.1. The instruction format in this type of computer needs three register address

fields. Thus the instruction for an arithmetic addition may be written in an assembly language as

ADD R1, R2, R3 To denote the operation R1 ← R2 + R3. The number of address fields in the

instruction can be reduced from three to two if the destination register is the same as one of the

source registers. Thus the instruction ADD R1, R2 Would denote the operation R1 ← R1 + R2. Only

register addresses for R1 and R2 need be specified in this instruction. Computers with multiple

processor registers use the move instruction with a mnemonic MOV to symbolize a transfer

instruction. Thus the instruction MOV R1, R2 Denotes the transfer R1 ← R2 (or R2 ← R1,

depending on the particular computer). Thus transfer-type instructions need two address fields to

specify the source and the destination.

General register-type computers employ two or three address fields in their instruction format. Each

address field may specify a processor register or a memory word. An instruction symbolized by

ADD R1, X Would specify the operation R1 ← R + M [X]. It has two address fields, one for register

R1 and the other for the memory address X. The stack-organized CPU was presented in Fig. 8-4.

Computers with stack organization would have PUSH and POP instructions which require an

address field. Thus the instruction PUSH X Will push the word at address X to the top of the stack.

The stack pointer is updated automatically. Operation-type instructions do not need an address field

in stack-organized computers. This is because the operation is performed on the two items that are

on top of the stack. The instruction ADD in a stack computer consists of an operation code only with

no address field. This operation has the effect of popping the two top numbers from the stack, adding

the numbers, and pushing the sum into the stack. There is no need to specify operands with an

address field since all operands are implied to be in the stack. To illustrate the influence of the

number of addresses on computer programs, we will evaluate the arithmetic statement X = (A + B) ∗

(C + D). Using zero, one, two, or three address instruction. We will use the symbols ADD, SUB,

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 23 Dr. Nidamanuru Srinivasa Rao, Associate Professor

MUL, and DIV for the four arithmetic operations; MOV for the transfer-type operation; and LOAD

and STORE for transfers to and from memory and AC register. We will assume that the operands are

in memory addresses A, B, C, and D, and the result must be stored in memory at address X. Three-

Address Instructions Computers with three-address instruction formats can use each address field to

specify either a processor register or a memory operand. The program in assembly language that

evaluates X = (A + B) ∗ (C + D) is shown below, together with comments that explain the register

transfer.

operation of each instruction.

ADD R1, A, B R1 ←

M [A] + M [B]

ADD R2, C, D R2 ←

M [C] + M [D]

MUL X, R1, R2 M [X]

← R1 ∗R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M [A] denotes

the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short programs when evaluating

arithmetic expressions. The disadvantage is that the binarycoded instructions require too many bits

to specify three addresses. An example of a commercial computer that uses three-address

instructions is the Cyber 170. The instruction formats in the Cyber computer are restricted to either

three register address fields or two register address fields and one memory address field

Two-Address Instructions

Two address instructions are the most common in commercial computers. Here again each address

field can specify either a processor register or a memory word. The program to evaluate X = (A + B)

∗ (C + D) is as

follows:

MOV R1, A R1 ← M [A]

ADD R1, B R1 ← R1 + M [B]

MOV R2, C R2 ← M [C]

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 24 Dr. Nidamanuru Srinivasa Rao, Associate Professor

ADD R2, D R2 ← R2 + M [D]

MUL R1, R2 R1 ← R1∗R2

MOV X, R1 M [X] ← R1

The MOV instruction moves or transfers the operands to and from memory and processor registers.

The first symbol listed in an instruction is assumed to be both a source and the destination where the

result of the operation is transferred.

One-Address Instructions

One-address instructions use an implied accumulator (AC) register for all data manipulation. For

multiplication and division there is a need for a second register. However, here we will neglect the

second and assume that the AC contains the result of tall operations. The program to evaluate X =

(A + B) ∗ (C + D) is

 LOAD A AC ← M [A]

ADD B AC ← A [C] + M [B]

STORE T M [T] ← AC

LOAD C AC ← M [C]

ADD D AC ← AC + M [D]

MUL T AC ← AC ∗ M [T]

STORE X M [X] ← AC

All operations are done between the AC register and a memory operand. T is the address of a

temporary memory location required for storing the intermediate result.

Zero-Address Instructions

A stack-organized computer does not use an address field for the instructions ADD and MUL. The

PUSH and POP instructions, however, need an address field to specify the operand that

communicates with the stack. The following program shows how X = (A + B) ∗ (C + D) will be

written for a stack organized computer. (TOS stands for top of stack)

PUSH A TOS ← A

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 25 Dr. Nidamanuru Srinivasa Rao, Associate Professor

PUSH B TOS ← B

ADD

PUSH C

TOS ← (A + B)

TOS ← C

PUSH D TOS ← D

ADD TOS ← (C + D)

MUL

POP X

TOS ← (C + D) ∗ (A + B)

M [X] ← TOS

To evaluate arithmetic expressions in a stack computer, it is necessary

to convert the expression into reverse Polish notation. The name “zeroaddress” is given to this type

of computer because of the absence of an address field in the computational instructions.

Instruction Codes

A set of instructions that specify the operations, operands, and the sequence by which processing has

to occur. An instruction code is a group of bits that tells the computer to perform a specific operation

part.

Format of Instruction

The format of an instruction is depicted in a rectangular box symbolizing the bits of an instruction.

Basic fields of an instruction format are given below:

1. An operation code field that specifies the operation to be performed.

2. An address field that designates the memory address or register.

3. A mode field that specifies the way the operand of effective address is determined.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 26 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Computers may have instructions of different lengths containing varying number of addresses. The

number of address field in the instruction format depends upon the internal organization of its

registers.

Addressing Modes

To understand the various addressing modes to be presented in this section, it is imperative that we

understand the basic operation cycle of the computer.

The control unit of a computer is designed to go through an instruction cycle that is divided into

three major phases:

1. Fetch the instruction from memory

2. Decode the instruction.

3. Execute the instruction.

There is one register in the computer called the program counter of PC that keeps track of the

instructions in the program stored in memory. PC holds the address of the instruction to be executed

next and is incremented each time an instruction is fetched from memory. The decoding done in step

2 determines the operation to be performed, the addressing mode of the instruction and the location

of the operands. The computer then executes the instruction and returns to step 1 to fetch the next

instruction in sequence. In some computers the addressing mode of the instruction is specified with a

distinct binary code, just like the operation code is specified. Other computers use a single binary

code that designates both the operation and the mode of the instruction. Instructions may be defined

with a variety of addressing modes, and sometimes, two or more addressing modes are combined in

one instruction.

1. The operation code specified the operation to be performed. The mode field is sued to locate the

operands needed for the operation. There may or may not be an address field in the instruction. If

there is an address field, it may designate a memory address or a processor register. Moreover, as

discussed in the preceding section, the instruction may have more than one address field, and each

address field may be associated with its own particular addressing mode.

Although most addressing modes modify the address field of the instruction, there are two modes

that need no address field at all. These are the implied and immediate modes.

1 Implied Mode: In this mode the operands are specified implicitly in the definition of the

instruction. For example, the instruction “complement accumulator” is an implied-mode instruction

because the operand in the accumulator register is implied in the definition of the instruction. In fact,

all register reference instructions that sue an accumulator are implied-mode instructions.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 27 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Op code Mode Address

Figure 1: Instruction format with mode field

Zero-address instructions in a stack-organized computer are impliedmode instructions since the

operands are implied to be on top of the stack.

2 Immediate Mode: In this mode the operand is specified in the instruction itself. Inother words, an

immediate- mode instruction has an operand field rather than an address field. The operand field

contains the actual operand to be used in conjunction with the operation specified in the instruction.

Immediate-mode instructions are useful for initializing registers to a constant value.

It was mentioned previously that the address field of an instruction may specify either a memory

word or a processor register. When the address field specifies a processor register, the instruction is

said to be in the register mode.

3 Register Mode: In this mode the operands are in registers that reside within the CPU.The particular

register is selected from a register field in the instruction. A kbit field can specify any one of 2k

registers.

4 Register Indirect Mode: In this mode the instruction specifies a register in the CPUwhose contents

give the address of the operand in memory. In other words, the selected register contains the address

of the operand rather than the operand itself. Before using a register indirect mode instruction, the

programmer must ensure that the memory address fo the operand is placed in the processor register

with a previous instruction. A reference to the register is then equivalent to specifying a memory

address. The advantage of a register indirect mode instruction is that the address field of the

instruction sues fewer bits to select a register than would have been required to specify a memory

address directly.

5.Auto increment or Auto decrement Mode: This is similar to the register indirect modeexcept that

the register is incremented or decremented after (or before) its value is used to access memory.

When the address stored in the register refers to a table of data in memory, it is necessary to

increment or decrement the register after every access to the table. This can be achieved by using the

increment or decrement instruction.

However, because it is such a common requirement, some computers incorporate a special mode that

automatically increments or decrements the content of the register after data access.

The address field of an instruction is used by the control unit in the CPU to obtain the operand from

memory. Sometimes the value given in the address field is the address of the operand, but sometimes

it is just an address from which the address of the operand is calculated. To differentiate among the

various addressing modes it is necessary to distinguish between the address part of the instruction

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 28 Dr. Nidamanuru Srinivasa Rao, Associate Professor

and the effective address used by the control when executing the instruction. The effective address is

defined to be the memory address obtained from the computation dictated by the given addressing

mode. The effective address is the address of the operand in a computational-type instruction. It is

the address where control branches in response to a branch-type instruction. We have already

defined two addressing modes in previous chapter.

6 Direct Address Mode: In this mode the effective address is equal to the address part ofthe

instruction. The operand resides in memory and its address is given directly by the address field of

the instruction. In a branch-type instruction the address field specifies the actual branch address.

7 Indirect Address Mode: In this mode the address field of the instruction gives theaddress where the

effective address is stored in memory. Control fetches the instruction from memory and uses its

address part to access memory again to read the effective address.

8 Relative Address Mode: In this mode the content of the program counter is added to the address

part of the instruction in order to obtain the effective address. The address part of the instruction is

usually a signed number (in 2‟s complement representation) which can be either positive or

negative. When this number is added to the content of the program counter, the result produces an

effective address whose position in memory is relative to the address of the next instruction. To

clarify with an example, assume that the program counter contains the number 825 and the address

part of the instruction contains the number 24. The instruction at location 825 is read from memory

during the fetch phase and the program counter is then incremented by one to 826 + 24 = 850. This

is 24 memory locations forward from the address of the next instruction. Relative addressing is often

used with branch-type instructions when the branch address is in the area surrounding the instruction

word itself. It results in a shorter address field in the instruction format since the relative address can

be specified with a smaller number of bits compared to the number of bits required to designate the

entire memory address.

9 Indexed Addressing Mode: In this mode the content of an index register is added to theaddress part

of the instruction to obtain the effective address. The index register is a special CPU register that

contains an index value. The address field of the instruction defines the beginning address of a data

array in memory. Each operand in the array is stored in memory relative to the beginning address.

The distance between the beginning address and the address of the operand is the index value stores

in the index register. Any operand in the array can be accessed with the same instruction provided

that the index register contains the correct index value. The index register can be incremented to

facilitate access to consecutive operands. Note that if an index-type instruction does not include an

address field in its format, the instructionconverts to the register indirect mode of operation. Some

computers dedicate one CPU register to function solely as an index register. This register is involved

implicitly when the index-mode instruction is used. In computers with many processor registers, any

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 29 Dr. Nidamanuru Srinivasa Rao, Associate Professor

one of the CPU registers can contain the index number. In such a case the register must be specified

explicitly in a register field within the instruction format.

10 Base Register Addressing Mode: In this mode the content of a base register is added tothe address

part of the instruction to obtain the effective address. This is similar to the indexed addressing mode

except that the register is now called a base register instead of an index register. The difference

between the two modes is in the way they are used rather than in the way that they are computed. An

index register is assumed to hold an index number that is relative to the address part of the

instruction. A base register is assumed to hold a base address and the address field of the instruction

gives a displacement relative to this base address. The base register addressing mode is used in

computers to facilitate the relocation of programs in memory. When programs and data are moved

from one segment of memory to another, as required in multiprogramming systems, the address

values of the base register requires updating to reflect the beginning of a new memory segment.

Numerical Example

Computer Registers

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 30 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Data Register(DR) : hold the operand(Data) read from memory

 Accumulator Register(AC) : general purpose processing register

 Instruction Register(IR) : hold the instruction read frommemory

 Temporary Register(TR) : hold a temporary data during processing

 Address Register(AR) : hold a memory address, 12 bit width

 Program Counter(PC) :

»hold the address of the next instruction to be read frommemory after the current instruction is

executed

»Instruction words are read and executed in sequence unless a branch instruction is encountered

»A branch instruction calls for a transfer to a nonconsecutive instruction in the program

»The address part of a branch instruction is transferred to PCto become the address of the next

instruction

Input Register(INPR) : receive an 8-bit character from an input device

 Output Register(OUTR) : hold an 8-bit character for an

output device

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 31 Dr. Nidamanuru Srinivasa Rao, Associate Professor

The following registers are used in Mano‟s example computer.

Register Number Register Register

symbol of bits name Function-----------------------

DR 16 Data register Holds memory operands

AR 12 Address register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction

TR 16 Temporary register Holds temporary data

INPR 8 Input register Holds input character

OUTR 8 Output register Holds output character

Computer Instructions:

The basic computer has 16 bit instruction register (IR) which can denote either memory reference or

register reference or input-output instruction.

1. Memory Reference – These instructions refer to memory address as an operand. The other

operand is always accumulator. Specifies 12 bit address, 3 bit opcode (other than 111) and 1 bit

addressing mode for direct and indirect addressing.

Example –

IR register contains = 0001XXXXXXXXXXXX, i.e. ADD after fetching and decoding of

instruction we find out that it is a memory reference instruction for ADD operation.

Hence, DR <- M[AR]

AC <- AC+ DR, SC <- 0

2. Register Reference – These instructions perform operations on registers rather than memory

addresses. The IR(14-12) is 111 (differentiates it from memory reference) and IR(15) is 0

(differentiates it from input/output instructions). The rest 12 bits specify register operation.

Example –

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 32 Dr. Nidamanuru Srinivasa Rao, Associate Professor

IR register contains = 0111001000000000, i.e. CMA after fetch and decode cycle we find out that it

is a register reference instruction for complement accumulator.

Hence, AC <- ~AC

3. Input/Output – These instructions are for communication between computer and outside

environment. The IR(14-12) is 111 (differentiates it from memory reference) and IR(15) is 1

(differentiates it from register reference instructions). The rest 12 bits specify I/O operation.

Example –

IR register contains = 1111100000000000, i.e. INP after fetch and decode cycle we find out that it is

an input/output instruction for inputing character. Hence, INPUT character from peripheral device.

Timing and Control

All sequential circuits in the Basic Computer CPU are driven by a master clock, with the exception

of the INPR register. At each clock pulse, the control unit sends control signals to control inputs of

the bus, the registers, and the ALU.

Control unit design and implementation can be done by two general methods:

 A hardwired control unit is designed from scratch using traditional digital logic design techniques

to produce a minimal, optimized circuit. In other words, the control unit is like an ASIC

(application-specific integrated circuit).

 A microprogrammed control unit is built from some sort of ROM. The desired control signals are

simply stored in the ROM, and retrieved in sequence to drive the microoperations needed by a

particular instruction.

Instruction Cycle

The CPU performs a sequence of microoperations for each instruction. The sequence for each

instruction of the Basic Computer can be refined into 4 abstract phases:

1. Fetch instruction

2. Decode

3. Fetch operand

4. Execute

Program execution can be represented as a top-down design:

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 33 Dr. Nidamanuru Srinivasa Rao, Associate Professor

1. Program execution

a. Instruction 1

i. Fetch instruction

ii. Decode

iii. Fetch operand

iv. Execute

b. Instruction 2

i. Fetch instruction

ii. Decode

iii. Fetch operand

iv. Execute

c. Instruction 3 ...

Program execution begins with:

PC ← address of first instruction, SC ← 0

After this, the SC is incremented at each clock cycle until an instruction is completed, and then it is

cleared to begin the next instruction. This process repeats until a HLT instruction is executed, or

until the power is shut off.

Instruction Fetch and Decode

The instruction fetch and decode phases are the same for all instructions, so the control functions and

microoperations will be independent of the instruction code.

Everything that happens in this phase is driven entirely by timing variables T0, T1 and T2. Hence,

all control inputs in the CPU during fetch and decode are functions of these three variables alone.

T0: AR ← PC

T1: IR ← M[AR], PC ← PC + 1

T2: D0-7 ← decoded IR(12-14), AR ← IR(0-11), I ← IR(15)

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 34 Dr. Nidamanuru Srinivasa Rao, Associate Professor

For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0.

UNIT 2:

Microprogrammed Control: Control memory, Address sequencing, micro program example,

design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing

modes, Data Transfer and Manipulation, Program Control.

Micro Programmed Control:

Control Memory

 The control unit in a digital computer initiates sequences of microoperations

 The complexity of the digital system is derived form the number of sequences that are performed

 When the control signals are generated by hardware, it is hardwired

 In a bus-oriented system, the control signals that specify microoperations are groups of bits that

select the paths in multiplexers, decoders, and ALUs.

 The control unit initiates a series of sequential steps of microoperations

 The control variables can be represented by a string of 1‟s and 0‟s called a control word

 A microprogrammed control unit is a control unit whose binary control variables are stored in

memory

 A sequence of microinstructions constitutes a microprogram

 The control memory can be a read-only memory

 Dynamic microprogramming permits a microprogram to be loaded and uses a writable control

memory

 A computer with a microprogrammed control unit will have two separate memories: a main

memory and a control memory

 The microprogram consists of microinstructions that specify various internal control signals for

execution of register microoperations

 These microinstructions generate the microoperations to: o fetch the instruction from main

memory o evaluate the effective address o execute the operation o return control to the fetch phase

for the next instruction

 The control memory address register specifies the address of the microinstruction

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 35 Dr. Nidamanuru Srinivasa Rao, Associate Professor

 The control data register holds the microinstruction read from memory

 The microinstruction contains a control word that specifies one or more microoperations for the

data processor

 The location for the next microinstruction may, or may not be the next in sequence

 Some bits of the present microinstruction control the generation of the address of the next

microinstruction

 The next address may also be a function of external input conditions

 While the microoperations are being executed, the next address is computed in the next address

generator circuit (sequencer) and then transferred into the CAR to read the next microinstructions

 Typical functions of a sequencer are: o incrementing the CAR by one o loading into the CAR and

address from control memory o transferring an external address o loading an initial address to start

the control operations

 A clock is applied to the CAR and the control word and next-address information are taken

directly from the control memory

 The address value is the input for the ROM and the control work is the output

 No read signal is required for the ROM as in a RAM

 The main advantage of the microprogrammed control is that once the hardware configuration is

established, there should be no need for h/w or wiring changes

 To establish a different control sequence, specify a different set of microinstructions for control

memory

Address Sequencing

 Microinstructions are stored in control memory in groups, with each group specifying a routine

 Each computer instruction has its own microprogram routine to generate the microoperations

 The hardware that controls the address sequencing of the control memory must be capable of

sequencing the microinstructions within a routine and be able to branch from one routine to another

 Steps the control must undergo during the execution of a single computer instruction: o Load an

initial address into the CAR when power is turned on in the computer. This address is usually the

address of the first microinstruction that activates the instruction fetch routine – IR holds instruction

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 36 Dr. Nidamanuru Srinivasa Rao, Associate Professor

o The control memory then goes through the routine to determine the effective address of the

operand – AR holds operand address o The next step is to generate the microoperations that

execute the instruction by considering the opcode and applying a mapping o After execution, control

must return to the fetch routine by executing an unconditional branch

 The microinstruction in control memory contains a set of bits to initiate microoperations in

computer registers and other bits to specify the method by which the next address is obtained

 Conditional branching is obtained by using part of the microinstruction to select a specific status

bit in order to determine its condition

 The status conditions are special bits in the system that provide parameter information such as the

carry-out of an adder, the sign bit of a number, the mode bits of an instruction, and i/o status

conditions

 The status bits, together with the field in the microinstruction that specifies a branch address,

control the branch logic

 The branch logic tests the condition, if met then branches, otherwise, increments the CAR

 If there are 8 status bit conditions, then 3 bits in the microinstruction are used to specify the

condition and provide the selection variables for the multiplexer

 For unconditional branching, fix the value of one status bit to be one load the branch address from

control memory into the CAR

 A special type of branch exists when a microinstruction specifies a branch to the first word in

control memory where a microprogram routine is located

 The status bits for this type of branch are the bits in the opcode

 Assume an opcode of four bits and a control memory of 128 locations

 The mapping process converts the 4-bit opcode to a 7-bit address for control memory

 This provides for each computer instruction a microprogram routine with a capacity of four

microinstructions

 Subroutines are programs that are used by other routines to accomplish a particular task and can

be called from any point within the main body ofthe microprogram

 Frequently many microprograms contain identical section of code

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 37 Dr. Nidamanuru Srinivasa Rao, Associate Professor

 Microinstructions can be saved by employing subroutines that use common sections of microcode

 Microprograms that use subroutines must have a provisions for storing the return address during a

subroutine call and restoring the address during a subroutine return

 A subroutine register is used as the source and destination for the addresses

Microprogram Example

•In the block diagram four registers and ALU areassociated with the processor unit. –DR, AR, PC,

AC and–ALU•DR can receive information from AC, PC or memory (selected byMUX)•AR can

receive information from PC or DR (selected by MUX)•PC can receive information only from AR.

➢ The process of code generation for the control memory is called microprogramming. ➢ Transfer

of information among registers in the processor is through MUXs rather than a bus.

Design of Control Unit

The Control Unit is classified into two major categories:

Hardwired Control

Microprogrammed Control

Hardwired Control

The Hardwired Control organization involves the control logic to be implemented with gates, flip-

flops, decoders, and other digital circuits.

The following image shows the block diagram of a Hardwired Control organization.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 38 Dr. Nidamanuru Srinivasa Rao, Associate Professor

o A Hard-wired Control consists of two decoders, a sequence counter, and a number of logic

gates.

o An instruction fetched from the memory unit is placed in the instruction register (IR).

o The component of an instruction register includes; I bit, the operation code, and bits 0

through 11.

o The operation code in bits 12 through 14 are coded with a 3 x 8 decoder.

o The outputs of the decoder are designated by the symbols D0 through D7.

o The operation code at bit 15 is transferred to a flip-flop designated by the symbol I.

o The operation codes from Bits 0 through 11 are applied to the control logic gates.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 39 Dr. Nidamanuru Srinivasa Rao, Associate Professor

o The Sequence counter (SC) can count in binary from 0 through 15.

The Microprogrammed Control organization is implemented by using the programming approach.

In Microprogrammed Control, the micro-operations are performed by executing a program

consisting of micro-instructions.

The following image shows the block diagram of a Microprogrammed Control organization.

o The Control memory address register specifies the address of the micro-instruction.

o The Control memory is assumed to be a ROM, within which all control information is

permanently stored.

o The control register holds the microinstruction fetched from the memory.

o The micro-instruction contains a control word that specifies one or more micro-operations for

the data processor.

o While the micro-operations are being executed, the next address is computed in the next

address generator circuit and then transferred into the control address register to read the next

microinstruction.

o The next address generator is often referred to as a micro-program sequencer, as it

determines the address sequence that is read from control memory.

Central Processing Unit:

The operation or task that must perform by CPU is:

• Fetch Instruction: The CPU reads an instruction from memory.

• Interpret Instruction: The instruction is decoded to determine what action is required.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 40 Dr. Nidamanuru Srinivasa Rao, Associate Professor

• Fetch Data: The execution of an instruction may require reading data from memory or I/O module.

• Process data: The execution of an instruction may require performing some arithmetic or logical

operation on data.

• Write data: The result of an execution may require writing data to memory or an I/O module.

To do these tasks, it should be clear that the CPU needs to store some data temporarily. It must

remember the location of the last instruction so that it can know where to get the next instruction. It

needs to store instructions and data temporarily while an instruction is being executed. In other

words, the CPU needs a small internal memory. These storage locations are generally referred as

registers. The major components of the CPU are an arithmetic and logic unit (ALU) and a control

unit (CU). The ALU does the actual computation or processing of data. The CU controls the

movement of data and instruction into and out of the CPU and controls the operation of the ALU.

The CPU is connected to the rest of the system through system bus. Through system bus, data or

information gets transferred between the CPU and the other component of the system. The system

bus may have three components: Data Bus: Data bus is used to transfer the data between main

memory and CPU. Address Bus: Address bus is used to access a particular memory location by

putting the address of the memory location. Control Bus: Control bus is used to provide the different

control signal generated by CPU to different part of the system. As for example, memory read is a

signal generated by CPU to indicate that a memory read operation has to be performed. Through

control bus this signal is transferred to memory module to indicate the required operation.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 41 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Stack Organization:

A useful feature that is included in the CPU of most computers is a stack or last in, first out (LIFO)

list. A stack is a storage device that stores information in such a manner that the item stored last is

the first item retrieved. The operation of a stack can be compared to a stack of trays. The last tray

placed on top of the stack is the first to be taken off. The stack in digital computers is essentially a

memory unit with an address register that can only(after an initial value is loaded in to it).The

register that hold the address for the stack is called a stack pointer (SP) because its value always

points at the top item in stack. Contrary to a stack of trays where the tray it self may be taken out or

inserted, the physical registers of a stack are always available for reading or writing. The two

operation of stack are the insertion and deletion of items. The operation of insertion is called PUSH

because it can be thought of as the result of pushing a new item on top. The operation of deletion is

called POP because it can be thought of as the result of removing one item so that the stack pops up.

However, nothing is pushed or popped in a computer stack. These operations are simulated by

incrementing or decrementing the stack pointer register.

INSTRUCTION FORMATS:

We know that a machine instruction has an opcode and zero or more operands. Encoding an

instruction set can be done in a variety of ways. Architectures are differentiated from one another by

the number of bits allowed per instruction (16, 32, and 64 are the most common), by the number of

operands allowed per instruction, and by the types of instructions and data each can process. More

specifically, instruction sets are differentiated by the following features: 1. Operand storage in the

CPU (data can be stored in a stack structure or in registers) 2. Number of explicit operands per

instruction (zero, one, two, and three being the most common) 3. Operand location (instructions can

be classified as register-to-register, register-tomemory or memory-to-memory, which simply refer to

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 42 Dr. Nidamanuru Srinivasa Rao, Associate Professor

the combinations of operands allowed per instruction) 4. Operations (including not only types of

operations but also which instructions can access memory and which cannot) 5. Type and size of

operands (operands can be addresses, numbers, or even characters) Number of Addresses: One of the

characteristics of the ISA(Industrial Standard Architecture) that shapes the architecture is the number

of addresses used in an instruction. Most operations can be divided into binary or unary operations.

Binary operations such as addition and multiplication require two input operands whereas the unary

operations such as the logical NOT need only a single operand. Most operations produce a single

result. There are exceptions, however. For example, the division operation produces two outputs: a

quotient and a remainder. Since most operations are binary, we need a total of three addresses: two

addresses to specify the two input operands and one to specify where the result should go.

Three-Address Machines:

In three-address machines, instructions carry all three addresses explicitly. The RISC processors use

three addresses. Table X1 gives some sample instructions of a threeaddress machine.

 In these machines, the C statement

 A = B + C * D - E + F + A

 is converted to the following code:

mult T,C,D ; T = C*D

add T,T,B ; T = B + C*D

sub T,T,E ; T = B + C*D - E

add T,T,F ; T = B + C*D - E + F

add A,T,A ; A = B + C*D - E + F + A

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 43 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Two-Address Machines : In two-address machines, one address doubles as a source and destination.

Usually, we use dest to indicate that the address is used for destination. But you should note that this

address also supplies one of the source operands. The Pentium is an example processor that uses two

addresses. Sample instructions of a two-address machine On these machines, the C statement A = B

+ C * D - E + F + A is converted to the following code: load T,C ; T = C mult T,D ; T = C*D add

T,B ; T = B + C*D sub T,E ; T = B + C*D - E add T,F ; T = B + C*D - E + F add A,T ; A = B +

C*D - E + F + A Table :T2 Sample Two-address machine instructions:

One-Address Machines : In the early machines, when memory was expensive and slow, a special set of

registers was used to provide an input operand as well as to receive the result from the ALU. Because of this,

these registers are called the accumulators. In most machines, there is just a single accumulator register. This

kind of design, called accumulator machines, makes sense if memory is expensive. In accumulator machines,

most operations are performed on the contents of the accumulator and the operand supplied by the instruction.

Thus, instructions for these machines need to specify only the address of a single operand. There is no need to

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 44 Dr. Nidamanuru Srinivasa Rao, Associate Professor

store the result in memory: this reduces the need for larger memory as well as speeds up the computation by

reducing the number of memory accesses. A few sample accumulator machine instructions are shown in

Table X3. In these machines, the C statement A = B + C * D - E + F + A is converted to the following code:

load C ; load C into the accumulator mult D ; accumulator = C*D add B ; accumulator = C*D+B sub E ;

accumulator = C*D+B-E add F ; accumulator = C*D+B-E+F.

add A ; accumulator = C*D+B-E+F+A store A ; store the accumulator contents in A

Zero-Address Machines : In zero-address machines, locations of both operands are assumed to be at

a default location. These machines use the stack as the source of the input operands and the result

goes back into the stack. Stack is a LIFO (last-in-first-out) data structure that all processors support,

whether or not they are zero-address machines. As the name implies, the last item placed on the

stack is the first item to be taken out of the stack. A good analogy is the stack of trays you find in a

cafeteria. All operations on this type of machine assume that the required input operands are the top

two values on the stack. The result of the operation is placed on top of the stack. Table X4 gives

some sample instructions for the stack machines.

two are special instructions that use a single address and are used to move data between memory and

stack.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 45 Dr. Nidamanuru Srinivasa Rao, Associate Professor

All other instructions use the zero-address format. Let‟s see how the stack machine translates the

arithmetic expression we have seen in the previous subsections. In these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

push E ; <E>

push C ; <C, E>

push D ; <D, C, E>

mult ; <C*D, E>

push B ; <B, C*D, E>

add ; <B+C*D, E>

sub ; <B+C*D-E>

push F ; <F, B+D*C-E>

add ; <F+B+D*C-E>

push A ; <A, F+B+D*C-E>

add ; <A+F+B+D*C-E>

pop A ; < >

On the right, we show the state of the stack after executing each instruction.

The top element of the stack is shown on the left. Notice that we pushed E early because we need to

subtract it from (B+C*D).

Stack machines are implemented by making the top portion of the stack internal to the processor.

This is referred to as the stack depth. The rest of the stack is placed in memory. Thus, to access the

top values that are within the stack depth, we do not have to access the memory. Obviously, we get

better performance by increasing the stack depth.

 Addressing Modes

We have examined the types of operands and operations that may be specified by machine

instructions. Now we have to see how is the address of an operand specified, and how are the bits of

an instruction organized to define the operand addresses and operation of that instruction

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 46 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Addressing Modes: The most common addressing techniques are

• Immediate

• Direct

• Indirect

• Register

• Register Indirect

• Displacement

• Stack

All computer architectures provide more than one of these addressing modes.

The question arises as to how the control unit can determine which addressing mode is being used in

a particular instruction. Several approaches are used. Often, different opcodes will use different

addressing modes. Also, one or more bits in the instruction format can be used as a mode field. The

value of the mode field determines which addressing mode is to be used.

What is the interpretation of effective address. In a system without virtual memory, the effective

address will be either a main memory address or a register. In a virtual memory system, the effective

address is a virtual address or a register. The actual mapping to a physical address is a function of the

paging mechanism and is invisible to the programmer. To explain the addressing modes, we use the

following notation:

Immediate Addressing:

 The simplest form of addressing is immediate addressing, in which the operand is actually present

in the instruction: OPERAND = A This mode can be used to define and use constants or set initial

values of variables. The advantage of immediate addressing is that no memory reference other than

the instruction fetch is required to obtain the operand. The disadvantage is that the size of the

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 47 Dr. Nidamanuru Srinivasa Rao, Associate Professor

number is restricted to the size of the address field, which, in most instruction sets, is small

compared with the world length.

Direct Addressing:

A very simple form of addressing is direct addressing, in which the address field contains the

effective address of the operand:

EA = A

It requires only one memory reference and no special calculation.

 Indirect Addressing:

With direct addressing, the length of the address field is usually less than the word length, thus

limiting the address range. One solution is to have the address field refer to the address of a word in

memory, which in turn contains a full-length address of the operand.

Register Addressing: Register addressing is similar to direct addressing. The only difference is that

the address field refers to a register rather than a main memory address: EA = R

The advantages of register addressing are that only a small address field is needed in the instruction

and no memory reference is required. The disadvantage of register addressing is that the address

space is very limited.

The exact register location of the operand in case of Register Addressing Mode is shown in the

Figure 34.4. Here, 'R' indicates a register where the operand is present.

 Register Indirect Addressing:

Register indirect addressing is similar to indirect addressing, except that the address field refers to a

register instead of a memory location. It requires only one memory reference and no special

calculation.

EA = (R)

Register indirect addressing uses one less memory reference than indirect addressing. Because, the

first information is available in a register which is nothing but a memory address. From that memory

location, we use to get the data or information. In general, register access is much more faster than

the memory access.

Diaplacement Addressing: A very powerful mode of addressing combines the capabilities of direct

addressing and register indirect addressing, which is broadly categorized as displacement addressing:

EA = A + (R) Displacement addressing requires that the instruction have two address fields, at least

one of which is explicit. The value contained in one address field (value = A) is used directly. The

other address field, or an implicit reference based on opcode, refers to a register whose contents are

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 48 Dr. Nidamanuru Srinivasa Rao, Associate Professor

added to A to produce the effective address. The general format of Displacement Addressing is

shown in the Figure 4.6. Three of the most common use of displacement addressing are: • Relative

addressing • Base-register addressing • Indexing

Relative Addressing: For relative addressing, the implicitly referenced register is the program

counter (PC). That is, the current instruction address is added to the address field to produce the EA.

Thus, the effective address is a displacement relative to the address of the instruction. Base-Register

Addressing: The reference register contains a memory address, and the address field contains a

displacement from that address. The register reference may be explicit or implicit. In some

implementation, a single segment/base register is employed and is used implicitly. In others, the

programmer may choose a register to hold the base address of a segment, and the instruction must

reference it explicitly. Indexing: The address field references a main memory address, and the

reference register contains a positive displacement from that address. In this case also the register

reference is sometimes explicit and sometimes implicit.

UNIT 3:

Data Representation: Data types, Complements, Fixed Point Representation, Floating Point

Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division

Algorithms, Floating–point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic

operations.

BASIC COMPUTER DATA TYPES:

• Binary information in digital computers is stored in memory or processor registers.

• The data types found in the registers of digital computers may be classified as being one of the

following categories: (1) numbers used in arithmetic computations, (2) letters of the alphabet used in

data processing, and (3) other discrete symbols used for specific purposes. All types of data, except

binary numbers, are represented in computer registers in binary-coded form.

• A number system of base or radix r is a system of that uses distinct symbols for r digits

• The decimal number system in everyday use employs radix 10 system. The 10 symbols are 0, 1, 2,

3, 4, 5, 6,7, 8, and 9; highest number being r-1

 The binary number system uses the radix 2. The two digit symbols used are 0 and 1.

• The string of digits 101101 is interpreted to represent 1 x 25 + 0 x 24 + 1 x 23 + 1 x 22 + 0 x 21 + 1 x 20 =

45

• Besides the decimal and binary number systems,

• Octal (radix 8)- 0,1,2,3,4,5,6,7 and

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 49 Dr. Nidamanuru Srinivasa Rao, Associate Professor

 • Hexadecimal (radix 16) – 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F • Octal can be converted to decimal as follows

(736.4)8 = 7 X 82 + 3 X 81 + 6 X 80 + 4X8-1 = 7X64 + 3X8 + 6X1 + 4/8 = (478.5) 10

Complements:

• A binary code is a group of n bits that assume upto 2^n distinct combinations of 0s and 1s.

• A BCD code is a binary coded decimal i.e. binary coding decimal numbers.

• ASCII (American Standard Code for Information Interchange),

• which uses seven bits to code 128 characters is standard alphanumeric character code.

• Complements are used in digital computers for simplifying the subtraction operation and for

logical manipulation. There are two types of complements

• For each base r system: the r's complement and the (r - 1)'s Complement

For binary base 2 system: the 2's complement and the 1's complement • For decimal base 10 system:

the 10's complement and the 9's complement • The 9's complement of 546700 is 999999 - 546700 =

453299 • The 9's complement of 12389 is 99999 - 12389 = 87610 • The 1's complement of a binary

number is formed by Changing 1's into 0's and 0's into 1's. • For example, the 1's complement of

1011001 is 0100110 and the 1's complement of 0001111 is 1110000.

The 10's complement of the decimal 2389 is 7610 + 1 = 7611 and is obtained by adding 1 to the 9's

complement value.

• The 2's complement of binary 101100 is 010011 + 1 = 010100 and is obtained by adding 1 to the

1's complement value.

 • For example, the 1's complement of 1011001 is 0100110 and the 1's complement of 0001111 is

1110000.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 50 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Solve: Find the 9’s and 10’s complement of 246700. Find the 1’s and 2’s complement of 1101100.

Fixed-Point Representation

• In computer binary systems it is customary to represent the sign with a bit placed in the leftmost

position of the number.

• sign bit is equal to 0 for positive and to 1 for negative.

 • a number may have a binary (or decimal) point.

• There are two ways of specifying the position of the binary point: by giving it a fixed position or

by employing a floatingpoint representation.

• The fixed-point method assumes that the binary point is always. fixed in one position.

 • The two positions most widely used are (1) a binary point in the extreme left of the register to

make the stored number a fraction, and (2) a binary point in the extreme right of the register to

make the stored number an integer. In either case, the binary point is not actually present.

Integer Representation for signed numbers

• signed-magnitude representation 1 0001110

• signed-1's complement representation 1 1110001

• signed-2's complement representation 1 1110010

Floating Point Representation:

The floating-point representation uses a second register to store a number that designates the position

of the decimal point in the first register. • The floating-point representation of a number has two

parts. The first part represents a signed, fixed-point number called the mantissa. The second part

designates the position of the decimal (or binary) point and is called the exponent The fixedpoint

mantissa may be a fraction or an integer. For example, • the decimal number +6132.789 is

represented in floating-point with a fraction and an exponent as follows:

Fraction Exponent

+0.6132789 +04

A floating-point binary number is represented in a similar manner except that it uses base 2 for the

exponent.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 51 Dr. Nidamanuru Srinivasa Rao, Associate Professor

• For example, the binary number +1001.11 is represented with an 8-bit fraction and 6-bit exponent

as follows:

Fraction Exponent

01001110 00010

Sign-Magnitude

used in every day arithmetic calculations .

Left most bit is sign bit- 0 – positive 1 – negative

• +18 = 00010010

• -18 = 10010010

• Problems

—Need to consider both sign and magnitude in

arithmetic

—Two representations of zero (+0 and -0)

Addition and Subtraction:

Normal binary addition

• Monitor sign bit for overflow

• So we only need addition and complement

Circuits

Assume:-

-magnitudes of two numbers as A and B.

 when those sign numbers are added we have eight different conditions depending on the sign bits

and operations performed.

SIGNED MAGNITUDE ADDITION AND SUBTRACTION

• Addition: A + B ; A: Augend; B: Addend

• Subtraction: A - B: A: Minuend; B: Subtrahend

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 52 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Case 1: addition

• If signs are same:

• 3+5 both numbers positive

• (-3) + (-5) both numbers negative -(3+5)

• If signs differ:

• (+3) + (-5) numbers differ in sign so, 3-5 (results in subtraction operation)

• (-3) + (+5) entin signs so, -(3-5)

• (results in subtraction operation)

Case 2: Subtraction

• If signs are same:

• 3-5 both numbers positive

• (-3) - (-5) both numbers negative -(3-5)

• If signs differ:

• (+3) - (-5) numbers differ in sign so, 3+5 (results in addition operation)

• (-3) -(+5) entin signs so, -(3+5)

• (results in addition operation)

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 53 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 54 Dr. Nidamanuru Srinivasa Rao, Associate Professor

ALGORITHM:

The two signs As and Bs are compared by EX-OR them. If result is 0 then As = Bs and if result is 1

the As ≠ Bs.

o For add operations if have same sign bits the magnitude must be added. For subtract operations

different sign bits means magnitudes be added as well.

o E bit is carry bit after addition and moves to AVE overflow bit only at this state.

o If sign bits are different in add operations or the same in subtract operations the two magnitudes

will be subtracted A – B. No overflow can occur here.

o After subtract if E=1 this means A>B and if E=0 then A<B. then here it is necessary to get 2’s

complement of A (by invert A then add 1) and sign of A is inverted only in this case.

SIGNED 2’S COMPLEMENT ADDITION AND SUBTRACTION:

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 55 Dr. Nidamanuru Srinivasa Rao, Associate Professor

The left most bit in 2’s complement represented binary number is the sign bit. If 0 the number is

positive and if 1 then number is negative. If sign bit is 1 the entire number is represented in 2’s

complement.

The addition of two numbers represented in 2’s complement is carried out by normal binary addition

with carry discarded.

The subtraction is carried out by taking 2’s complement (B) of subtrahend and adding it to minuend

(A).

Overflow can be detected by inspecting last 2 carries out of addition by EX-OR them. If different

then overflow is detected.

For addition simply implement add then see overflow. For subtract add 2’s complement of B to A

and watch overflow since the A and –B could be of same sign.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 56 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 57 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 58 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 59 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 60 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Multiplication Algorithm: In the beginning, the multiplicand is in B and the multiplier in Q. Their

corresponding signs are in Bs and Qs respectively. We compare the signs of both A and Q and set to

corresponding sign of the product since a double-length product will be stored in registers A and Q.

Registers A and E are cleared and the sequence counter SC is set to the number of bits of the

multiplier. Since an operand must be stored with its sign, one bit of the word will be occupied by the

sign and the magnitude will consist of n-1 bits. Now, the low order bit of the multiplier in Qn is

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 61 Dr. Nidamanuru Srinivasa Rao, Associate Professor

tested. If it is 1, the multiplicand (B) is added to present partial product (A), 0 otherwise. Register

EAQ is then shifted once to the right to form the new partial product. The sequence counter is

decremented by 1 and its new value checked. If it is not equal to zero, the process is repeated and a

new partial product is formed. When SC = 0 we stops the process.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 62 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 63 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 64 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Division of two fixed-point binary numbers in signed magnitude representation is performed with

paper and pencil by a process of successive compare, shift and subtract operations. Binary division is

much simpler than decimal division because here the quotient digits are either 0 or 1 and there is no

need to estimate how many times the dividend or partial remainder fits into the divisor. The division

process is described in Figure.

The devisor is compared with the five most significant bits of the dividend. Since the 5-bit number is smaller

than B, we again repeat the same process. Now the 6-bit number is greater than B, so we place a 1 for the

quotient bit in the sixth position above the dividend. Now we shift the divisor once to the right and subtract it

from the dividend. The difference is known as a partial remainder because the division could have stopped

here to obtain a quotient of 1 and a remainder equal to the partial remainder. Comparing a partial remainder

with the divisor continues the process. If the partial remainder is greater than or equal to the divisor, the

quotient bit is equal to 1. The divisor is then shifted right and subtracted from the partial remainder. If the

partial remainder is smaller than the divisor, the quotient bit is 0 and no subtraction is needed. The divisor is

shifted once to the right in any case. Obviously the result gives both a quotient and a remainder.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 65 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 66 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 67 Dr. Nidamanuru Srinivasa Rao, Associate Professor

UNIT 4:

Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of

Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate

Memory, Cache Memory.

The Basic Computer I/O consists of a simple terminal with a keyboard and a printer/monitor. The

keyboard is connected serially (1 data wire) to the INPR register. INPR is a shift register capable of

shifting in external data from the keyboard one bit at a time. INPR outputs are connected in parallel

to the ALU.

How many CPU clock cycles are needed to transfer a character from the keyboard to the INPR

register? (tricky)

Are the clock pulses provided by the CPU master clock?

RS232, USB, Firewire are serial interfaces with their own clock independent of the CPU. (USB

speed is independent of processor speed.)

 RS232: 115,200 kbps (some faster)

 USB: 11 mbps

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 68 Dr. Nidamanuru Srinivasa Rao, Associate Professor

 USB2: 480 mbps

 FW400: 400 mbps

 FW800: 800 mbps

 USB3: 4.8 gbps

OUTR inputs are connected to the bus in parallel, and the output is connected serially to the

terminal. OUTR is another shift register, and the printer/monitor receives an end-bit during each

clock pulse.

I/O Operations Since input and output devices are not under the full control of the CPU (I/O events

are asynchronous), the CPU must somehow be told when an input device has new input ready to

send, and an output device is ready to receive more output. The FGI flip-flop is set to 1 after a new

character is shifted into INPR. This is done by the I/O interface, not by the control unit. This is an

example of an asynchronous input event (not synchronized with or controlled by the CPU). The FGI

flip-flop must be cleared after transferring the INPR to AC. This must be done as a microoperation

controlled by the CU, so we must include it in the CU design. The FGO flip-flop is set to 1 by the

I/O interface after the terminal has finished displaying the last character sent. It must be cleared by

the CPU after transferring a character into OUTR. Since the keyboard controller only sets FGI and

the CPU only clears it, a JK flip-flop is convenient:

How do we control the CK input on the FGI flip-flop? (Assume leading-edge triggering.) There are

two common methods for detecting when I/O devices are ready, namely software polling and

interrupts. These two methods are discussed in the following sections. Table 5-5 outlines the Basic

Computer input-output instructions.

Interrupts To alleviate the problems of software polling, a hardware solution is needed. 108

Analogies to software polling in daily life tend to look rather silly. For example, imagine a teacher is

analogous to a CPU, and the students are I/O devices. The students are working asynchronously, as

the teacher walks around the room constantly asking each individual student "are you done yet?".

What would be a better approach? With interrupts, the running program is not responsible for

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 69 Dr. Nidamanuru Srinivasa Rao, Associate Professor

checking the status of I/O devices. Instead, it simply does its own work, and assumes that I/O will

take care of itself! When a device becomes ready, the CPU hardware initiates a branch to an I/O

subprogram called an interrupt service routine (ISR), which handles the I/O transaction with the

device. An interrupt can occur during any instruction cycle as long as interrupts are enabled. When

the current instruction completes, the CPU interrupts the flow of the program, executes the ISR, and

then resumes the program. The program itself is not involved and is in fact unaware that it has been

interrupted. Figure 5-13 outlines the Basic Computer interrupt process. Interrupts can be globally

enabled or disabled via the IEN flag (flip-flop). Some architectures have a separate ISR for each

device. The Basic Computer has a single ISR that services both the input and output devices. If

interrupts are enabled, then when either FGI or FGO gets set, the R flag also gets set. (R = FGI v

FGO) This allows the system to easily check whether any I/O device needs service. Determining

which one needs service can be done by the ISR. If R = 0, the CPU goes through a normal

instruction cycle. If R = 1, the CPU branches to the ISR to process an I/O transaction. How much

time does checking for interrupts add to the instruction cycle? Interrupts are usually disabled while

the ISR is running, since it is difficult to make an ISR reentrant. (Callable while it is already in

progress, such as a recursive function.) Hence, IEN and R are cleared as part of the interrupt cycle.

IEN should be re-enabled by the ISR when it is finished. (In many architectures this is done by a

special return instruction to ensure that interrupts are not enabled before the return is actually

executed.) The Basic Computer interrupt cycle is shown in figure 5-13 (above). The Basic

Computer interrupt cycle in detail: T0'T1'T2'(IEN)(FGI v FGO): R ← 1 109 RT0: AR ← 0, TR ←

PC RT1: M[AR] ← TR, PC ← 0 RT2: PC ← PC + 1, IEN ← 0, R ← 0, SC ← 0 To enable the use

of interrupts requires several steps: 1. Write an ISR 2. Install the ISR in memory at some arbitrary

address X 3. Install the instruction "BUN X" at address 1 4. Enable interrupts with the ION

instruction The sequence of events utilizing an interrupt to process keyboard input is as follows: 1. A

character is typed 2. FGI ← 1 (same as with polling) 3. R ← 1, IEN ← 0 4. M[0] ← PC (store return

address) 5. PC ← 1 (branch to interrupt vector) 6. BUN X (branch to ISR) 7. ISR checks FGI (found

to be 1) 8. INP (AC ← INPR) 9. Character in AC is placed in a queue 10. ISR checks FGO (found to

be 0) 11. ION 12. BUN 0 I Programs then read their input from a queue rather than directly from the

input device. The ISR adds input to the queue as soon as it is typed, regardless of what code is

running, and then returns to the running program.

Input-Output Interface Peripherals connected to a computer need special communication links for

interfacing with CPU. In computer system, there are special hardware components between the CPU

and peripherals to control or manage the input-output transfers. These components are called input-

output interface units because they provide communication links between processor bus and

peripherals. They provide a method for transferring information between internal system and input-

output devices. Asynchronous Data Transfer We know that, the internal operations in individual unit

of digital system are synchronized by means of clock pulse, means clock pulse is given to all

registers within a unit, and all data transfer among internal registers occur simultaneously during

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 70 Dr. Nidamanuru Srinivasa Rao, Associate Professor

occurrence of clock pulse.Now, suppose any two units of digital system are designed independently

such as CPU and I/O interface. And if the registers in the interface(I/O interface) share a common

clock with CPU registers, then transfer between the two units is said to be synchronous.But in most

cases, the internal timing in each unit is independent from each other in such a way that each uses its

own private clock for its internal registers.In that case, the two units are said to be asynchronous to

each other, and if data transfer occur between them this data transfer is said to be Asynchronous

Data Transfer. But, the Asynchronous Data Transfer between two independent units requires that

control signals be transmitted between the communicating units so that the time can be indicated at

which they send data.

This asynchronous way of data transfer can be achieved by two methods: 1. One way is by means of

strobe pulse which is supplied by one of the units to other unit.When transfer has to occur.This

method is known as “Strobe Control”. 2. Another method commonly used is to accompany each data

item being transferred with a control signal that indicates the presence of data in the bus.The unit

receiving the data item responds with another signal to acknowledge receipt of the data.This method

of data transfer between two independent units is said to be “Handshaking”. The strobe pulse and

handshaking method of asynchronous data transfer are not restricted to I/O transfer.In fact, they are

used extensively on numerous occasion requiring transfer of data between two independent units.So,

here we consider the transmitting unit as source and receiving unit as destination. As an example:

The CPU, is the source during an output or write transfer and is the destination unit during input or

read transfer. And thus, the sequence of control during an asynchronous transfer depends on whether

the transfer is initiated by the source or by the destination. So, while discussing each way of data

transfer asynchronously we see the sequence of control in both terms when it is initiated by source or

when it is initiated by destination.In this way, each way of data transfer, can be further divided into

parts, source initiated and destination initiated. We can also specify, asynchronous transfer between

two independent units by means of a timing diagram that shows the timing relationship that exists

between the control and the data buses.

Now, we will discuss each method of asynchronous data transfer in detail one by one.

1. Strobe Control:

The Strobe Control method of asynchronous data transfer employs a single control line to time each

transfer .This control line is also known as strobe and it may be achieved either by source or

destination, depending on which initiate transfer. Source initiated strobe for data transfer:

The block diagram and timing diagram of strobe initiated by source unit is shown in figure below:

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 71 Dr. Nidamanuru Srinivasa Rao, Associate Professor

In block diagram we see that strobe is initiated by source, and as shown in timing diagram, the

source unit first places the data on the data bus.After a brief delay to ensure that the data settle to a

steady value, the source activates a strobe pulse.The information on data bus and strobe control

signal remain in the active state for a sufficient period of time to allow the destination unit to receive

the data.Actually, the destination unit, uses a falling edge of strobe control to transfer the contents of

data bus to one of its internal registers.The source removes the data from the data bus after it

disables its strobe pulse.New valid data will be available only after the strobe is enabled again.

Destination-initiated strobe for data transfer: The block diagram and timing diagram of strobe

initiated by destination is shown in figure below:

In block diagram, we see that, the strobe initiated by destination, and as shown in timing diagram,

the destination unit first activates the strobe pulse, informing the source to provide the data.The

source unit responds by placing the requested binary information on the data bus.The data must be

valid and remain in the bus long enough for the destination unit to accept it.The falling edge of

strobe pulse can be used again to trigger a destination register.The destination unit then disables the

strobe.And source removes the data from data bus after a per determine time interval. Now, actually

in computer, in the first case means in strobe initiated by source - the strobe may be a memory-write

control signal from the CPU to a memory unit.The source, CPU, places the word on the data bus and

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 72 Dr. Nidamanuru Srinivasa Rao, Associate Professor

informs the memory unit, which is the destination, that this is a write operation. And in the second

case i.e, in the strobe initiated by destination - the strobe may be a memory read control from the

CPU to a memory unit.The destination, the CPU, initiates the read operation to inform the memory,

which is a source unit, to place selected word into the data bus.

2. Handshaking: The disadvantage of strobe method is that source unit that initiates the transfer has

no way of knowing whether the destination has actually received the data that was placed in the

bus.Similarly, a destination unit that initiates the transfer has no way of knowing whether the source

unit, has actually placed data on the bus. This problem can be solved by handshaking method. Hand

shaking method introduce a second control signal line that provides a replay to the unit that initiates

the transfer. In it, one control line is in the same direction as the data flow in the bus from the source

to destination.It is used by source unit to inform the destination unit whether there are valid data in

the bus.The other control line is in the other direction from destination to the source.It is used by the

destination unit to inform the source whether it can accept data.And in it also, sequence of control

depends on unit that initiate transfer.Means sequence of control depends whether transfer is initiated

by source and destination.Sequence of control in both of them are described below:

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 73 Dr. Nidamanuru Srinivasa Rao, Associate Professor

In its block diagram, we se that two handshaking lines are "data valid", which is generated by the

source unit, and "data accepted", generated by the destination unit. The timing diagram shows the

timing relationship of exchange of signals between the two units.Means as shown in its timing

diagram, the source initiates a transfer by placing data on the bus and enabling its data valid

signal.The data accepted signal is then activated by destination unit after it accepts the data from the

bus.The source unit then disable its data valid signal which invalidates the data on the bus.After this,

the destination unit disables its data accepted signal and the system goes into initial state.The source

unit does not send the next data item until after the destination unit shows its readiness to accept new

data by disabling the data accepted signal. This sequence of events described in its sequence

diagram, which shows the above sequence in which the system is present, at any given time.

Modes of I/O Data Transfer

Data transfer between the central unit and I/O devices can be handled in generally three types of

modes which are given below:

1. Programmed I/O

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 74 Dr. Nidamanuru Srinivasa Rao, Associate Professor

2. Interrupt Initiated I/O

3. Direct Memory Access

Programmed I/O Programmed I/O instructions are the result of I/O instructions written in computer

program. Each data item transfer is initiated by the instruction in the program. Usually the program

controls data transfer to and from CPU and peripheral. Transferring data under programmed I/O

requires constant monitoring of the peripherals by the CPU. Interrupt Initiated I/O In the

programmed I/O method the CPU stays in the program loop until the I/O unit indicates that it is

ready for data transfer. This is time consuming process because it keeps the processor busy

needlessly. This problem can be overcome by using interrupt initiated I/O. In this when the interface

determines that the peripheral is ready for data transfer, it generates an interrupt. After receiving the

interrupt signal, the CPU stops the task which it is processing and service the I/O transfer and then

returns back to its previous processing task. Direct Memory Access Removing the CPU from the

path and letting the peripheral device manage the memory buses directly would improve the speed of

transfer. This technique is known as DMA. In this, the interface transfer data to and from the

memory through memory bus. A DMA controller manages to transfer data between peripherals and

memory unit. Many hardware systems use DMA such as disk drive controllers, graphic cards,

network cards and sound cards etc. It is also used for intra chip data transfer in multicore processors.

In DMA, CPU would initiate the transfer, do other operations while the transfer is in progress and

receive an interrupt from the DMA controller when the transfer has been completed. Priority

Interrupt A priority interrupt is a system which decides the priority at which various devices, which

generates the interrupt signal at the same time, will be serviced by the CPU. The system has

authority to decide which conditions are allowed to interrupt the CPU, while some other interrupt is

being serviced. Generally, devices with high speed transfer such as magnetic disks are given high

priority and slow devices such as keyboards are given low priority. When two or more devices

interrupt the computer simultaneously, the computer services the device with the higher priority first.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 75 Dr. Nidamanuru Srinivasa Rao, Associate Professor

MEMORY ORGANIZATION

• RAM composed of a large number of (2M) of addressable locations, each of which stores a w-bit

word.

• RAM operates as follows: first the address of the target location to be accessed is transferred via

the address bus to the RAM’s address buffer.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 76 Dr. Nidamanuru Srinivasa Rao, Associate Professor

• The address is then processed by the address decoder, which selects the required location in the

storage cell unit.

• If a read operation is requested, the contents of the addressed location are transferred from the

storage cell unit to the data buffer and from there to the data bus.

• If a write operation is requested, the word to be stored is transferred from the data bus to the

selected location in the stored unitThe storage unit is made up of many identical 1-bit memory cells

and their Interconnections. In each line connected to the storage cell unit, we can expect to

• find a driver that acts as either an amplifier or a transducer of physical signals. Organization

• assume that each word is stored in a single track and that each access results In the transfer of a

block of words.

• The address of the data to be accessed is applied to the address decoder, whose output determines

the track to be used and the location of the desired block of Information within the track.

• the track address determines the particular read-write head to be selected.The selected head is

moved into position to transfer data to of from the target track. A track position indicator generates

the address of the block that isCurrently passing the read-write head.

• The generated address is compared with the block address produced by the address decoder.The

selected head is enabled and the data transfer between the storage track and the memory data buffer

register begins.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 77 Dr. Nidamanuru Srinivasa Rao, Associate Professor

• The read-write head is disabled when a complete block information has been transferred

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 78 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 79 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 80 Dr. Nidamanuru Srinivasa Rao, Associate Professor

– Speed of the main memory is very low in comparison with the speed of processor – For good performance,

the processor cannot spend much time of its time waiting to access instructions and data in main memory. –

Important to device a scheme that reduces the time to ace the information – An efficient solution is to use fast

cache memory When a cache is full and a memory word 101 that is not in the cache is referenced, the cache

control hardware must decide which block should be removed to create space for the new block that contain

the referenced word.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 81 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 82 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Virtual memory It a computer system technique which gives an application program the impression

that it has contiguous working memory (an address space), while in fact it may be physically

fragmented and may even overflow on to disk storage. Virtual memory provides two primary

functions: 1. Each process has its own address space, thereby not required to be relocated nor

required to use relative addressing mode. 2. Each process sees one contiguous block of free memory

upon launch. Fragmentation is hidden.

Auxiliary Memory

Devices that provide backup storage are called auxiliary memory. For example: Magnetic

disks and tapes are commonly used auxiliary devices. Other devices used as auxiliary memory are

magnetic drums, magnetic bubble memory and optical disks.

It is not directly accessible to the CPU, and is accessed using the Input/Output channels.

Cache Memory

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 83 Dr. Nidamanuru Srinivasa Rao, Associate Professor

The data or contents of the main memory that are used again and again by CPU, are stored in

the cache memory so that we can easily access that data in shorter time.

Whenever the CPU needs to access memory, it first checks the cache memory. If the data is not

found in cache memory then the CPU moves onto the main memory. It also transfers block of recent

data into the cache and keeps on deleting the old data in cache to accomodate the new one.

Memory Mapping and Concept of Virtual Memory:

The transformation of data from main memory to cache memory is called mapping. There are 3 main

types of mapping: Associative Mapping Direct Mapping Set Associative Mapping Associative

Mapping The associative memory stores both address and data. The address value of 15 bits is 5

digit octal numbers and data is of 12 bits word in 4 digit octal number. A CPU address of 15 bits is

placed in argument register and the associative memory is searched for matching address.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 84 Dr. Nidamanuru Srinivasa Rao, Associate Professor

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 85 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Virtual Memory:

Virtual memory is the separation of logical memory from physical memory. This separation provides

large virtual memory for programmers when only small physical memory is available.

UNIT 5:

Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics.

Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction

Pipeline, RISC Pipeline, Vector Processing, Array Processor.

MultiProcessors: Characteristics of Multiprocessors, Interconnection Structures,

Interprocessor arbitration, Interprocessor communication and synchronization, cache

Coherence.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 86 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Reduced Instruction Set Computer:

Reduced Instruction Set Architecture (RISC) –

The main idea behind this is to make hardware simpler by using an instruction set composed of a

few basic steps for loading, evaluating, and storing operations just like a load command will load

data, a store command will store the data.

Complex Instruction Set Architecture (CISC) –

The main idea is that a single instruction will do all loading, evaluating, and storing operations just

like a multiplication command will do stuff like loading data, evaluating, and storing it, hence it’s

complex.

Earlier when programming was done using assembly language, a need was felt to make instruction

do more tasks because programming in assembly was tedious and error-prone due to which CISC

architecture evolved but with the uprise of high-level language dependency on assembly reduced

RISC architecture prevailed.

Characteristic of RISC –

1. Simpler instruction, hence simple instruction decoding.

2. Instruction comes undersize of one word.

3. Instruction takes a single clock cycle to get executed.

4. More general-purpose registers.

5. Simple Addressing Modes.

6. Fewer Data types.

7. A pipeline can be achieved.

Characteristic of CISC –

1. Complex instruction, hence complex instruction decoding.

2. Instructions are larger than one-word size.

3. Instruction may take more than a single clock cycle to get executed.

4. Less number of general-purpose registers as operations get performed in memory itself.

5. Complex Addressing Modes.

6. More Data types.

Example – Suppose we have to add two 8-bit numbers:

 CISC approach: There will be a single command or instruction for this like ADD which will

perform the task.

 RISC approach: Here programmer will write the first load command to load data in registers

then it will use a suitable operator and then it will store the result in the desired location.

So, add operation is divided into parts i.e. load, operate, store due to which RISC programs are

longer and require more memory to get stored but require fewer transistors due to less complex

command.

Difference – RISC and CISC

RISC CISC

Focus on software Focus on hardware

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 87 Dr. Nidamanuru Srinivasa Rao, Associate Professor

RISC CISC

Uses only Hardwired control unit

Uses both hardwired and microprogrammed

control unit

Transistors are used for more registers

Transistors are used for storing complex

Instructions

Fixed sized instructions Variable sized instructions

Can perform only Register to Register

Arithmetic operations

Can perform REG to REG or REG to MEM or

MEM to MEM

Requires more number of registers Requires less number of registers

Code size is large Code size is small

An instruction executed in a single clock cycle Instruction takes more than one clock cycle

An instruction fit in one word Instructions are larger than the size of one word

Both approaches try to increase the CPU performance

 RISC: Reduce the cycles per instruction at the cost of the number of instructions per program.

 CISC: The CISC approach attempts to minimize the number of instructions per program but at

the cost of an increase in the number of cycles per instruction.

Parallel processing

Execution of Concurrent Events in the computing process to achieve faster Computational Speed

Levels of Parallel Processing

- Job or Program level

- Task or Procedure level

- Inter-Instruction level

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 88 Dr. Nidamanuru Srinivasa Rao, Associate Professor

- Intra-Instruction level

PARALLEL COMPUTERS Architectural Classification Flynn's classification » Based on the

multiplicity of Instruction Streams and Data Streams » Instruction Stream Sequence of Instructions

read from memory » Data Stream Operations performed on the data in the processor.

What is Pipelining? Pipelining is the process of accumulating instruction from the processor through

a pipeline. It allows storing and executing instructions in an orderly process. It is also known as

pipeline processing. Pipelining is a technique where multiple instructions are overlapped during

execution. Pipeline is divided into stages and these stages are connected with one another to form a

pipe like structure. Instructions enter from one end and exit from another end. Pipelining increases

the overall instruction throughput. In pipeline system, each segment consists of an input register

followed by a combinational circuit. The register is used to hold data and combinational circuit

performs operations on it. The output of combinational circuit is applied to the input register of the

next segment

Pipeline system is like the modern day assembly line setup in factories. For example in a car

manufacturing industry, huge assembly lines are setup and at each point, there are robotic arms to

perform a certain task, and then the car moves on ahead to the next arm. Types of Pipeline It is

divided into 2 categories: 1. Arithmetic Pipeline 2. Instruction Pipeline

Arithmetic Pipeline Arithmetic pipelines are usually found in most of the computers. They are used

for floating point operations, multiplication of fixed point numbers etc. For example: The input to

the Floating Point Adder pipeline is: X = A*2^a Y = B*2^b Here A and B are mantissas (significant

digit of floating point numbers), while a and b are exponents. The floating point addition and

subtraction is done in 4 parts: 1. Compare the exponents. 2. Align the mantissas. 3. Add or subtract

mantissas 4. Produce the result. Registers are used for storing the intermediate results between the

above operations.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 89 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Instruction Pipeline In this a stream of instructions can be executed by overlapping fetch, decode and execute

phases of an instruction cycle. This type of technique is used to increase the throughput of the computer

system. An instruction pipeline reads instruction from the memory while previous instructions are being

executed in other segments of the pipeline. Thus we can execute multiple instructions simultaneously. The

pipeline will be more efficient if the instruction cycle is divided into segments of equal duration. Advantages

of Pipelining 1. The cycle time of the processor is reduced. 2. It increases the throughput of the system 3. It

makes the system reliable. Disadvantages of Pipelining 1. The design of pipelined processor is complex and

costly to manufacture. 2. The instruction latency is more.

Vector(Array) Processing There is a class of computational problems that are beyond the capabilities

of a conventional computer. These problems require vast number of computations on multiple data

items, that will take a conventional computer(with scalar processor) days or even weeks to complete.

Such complex instructions, which operates on multiple data at the same time, requires a better way

of instruction execution, which was achieved by Vector processors. Scalar CPUs can manipulate one

or two data items at a time, which is not very efficient. Also, simple instructions like ADD A to B,

and store into C are not practically efficient. Addresses are used to point to the memory location

where the data to be operated will be found, which leads to added overhead of data lookup. So until

the data is found, the CPU would be sitting ideal, which is a big performance issue. Hence, the

concept of Instruction Pipeline comes into picture, in which the instruction passes through several

sub-units in turn.

These sub-units perform various independent functions, for example: the first one decodes the

instruction, the second sub-unit fetches the data and the thirdsub-unit performs the math itself.

Therefore, while the data is fetched for one instruction, CPU does not sit idle, it rather works on

decoding the next instruction set, ending up working like an assembly line. Vector processor, not

only use Instruction pipeline, but it also pipelines the data, working on multiple data at the same

time. A normal scalar processor instruction would be ADD A, B, which leads to addition of two

operands, but what if we can instruct the processor to ADD a group of numbers(from 0 to n memory

location) to another group of numbers(lets say, n to k memory location). This can be achieved by

vector processors. In vector processor a single instruction, can ask for multiple data operations,

which saves time, as instruction is decoded once, and then it keeps on operating on different data

items.

Applications of Vector Processors

Computer with vector processing capabilities are in demand in specialized applications. The

following are some areas where vector processing is used:

1. Petroleum exploration.

2. Medical diagnosis.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 90 Dr. Nidamanuru Srinivasa Rao, Associate Professor

3. Data analysis.

4. Weather forecasting.

5. Aerodynamics and space flight simulations.

6. Image processing.

A parallel processing system is able to perform concurrent data processing to achieve faster

execution time

 • The system may have two or more ALUs and be able to execute two or more instructions at the

same time

• Also, the system may have two or more processors operating concurrently

 • Goal is to increase the throughput – the amount of processing that can be accomplished during a

given interval of time

• Parallel processing increases the amount of hardware required

• Example: the ALU can be separated into three units and the operands diverted to each unit under

the supervision of a control unit

 • All units are independent of each other • A multifunctional organization is usually associated with

a complex control unit to coordinate all the activities among the various components

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 91 Dr. Nidamanuru Srinivasa Rao, Associate Professor

• Parallel processing can be classified from:

oThe internal organization of the processors

o The interconnection structure between processors

o The flow of information through the system

o The number of instructions and data items that are manipulated simultaneously

• The sequence of instructions read from memory is the instruction stream

• The operations performed on the data in the processor is the data stream

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 92 Dr. Nidamanuru Srinivasa Rao, Associate Professor

• Parallel processing may occur in the instruction stream, the data stream, or both Computer

classification:

 o Single instruction stream, single data stream – SISD

o Single instruction stream, multiple data stream – SIMD

o Multiple instruction stream, single data stream – MISD

o Multiple instruction stream, multiple data stream – MIMD

• SISD – Instructions are executed sequentially. Parallel processing may be achieved by means of

multiple functional units or by pipeline processing

• SIMD – Includes multiple processing units with a single control unit. All processors receive the

same instruction, but operate on different data.

• MIMD – A computer system capable of processing several programs at the same time.

• We will consider parallel processing under the following main topics:

PIPELINING

• Pipelining is a technique of decomposing a sequential process into sub operations, with each sub

process being executed in a special dedicated segment that operates concurrently with all other

segments

• Each segment performs partial processing dictated by the way the task is partitioned

• The result obtained from the computation in each segment is transferred to the next segment in the

pipeline

• The final result is obtained after the data have passed through all segments

• Can imagine that each segment consists of an input register followed by an combinational circuit

• A clock is applied to all registers after enough time has elapsed to perform all segment activity

• The information flows through the pipeline one step at a time

• Example: Ai * Bi + Ci

 for i = 1, 2, 3, …, 7

The suboperations performed in each segment are:

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 93 Dr. Nidamanuru Srinivasa Rao, Associate Professor

R1 ← Ai

, R2 ← Bi

R3 ← R1 * R2, R4 ← Ci

R5 ← R3 + R4

Any operation that can be decomposed into a sequence of suboperations of about the same

complexity can be implemented by a pipeline processor

• The technique is efficient for those applications that need to repeat the same task many time with

different sets of data

• A task is the total operation performed going through all segments of a pipeline

• The behavior of a pipeline can be illustrated with a space-time diagram

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 94 Dr. Nidamanuru Srinivasa Rao, Associate Professor

• This shows the segment utilization as a function of time

• Once the pipeline is full, it takes only one clock period to obtain an output

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 95 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Arithmetic Pipeline

• Pipeline arithmetic units are usually found in very high speed computers

• They are used to implement floating-point operations, multiplication of fixed-point

numbers, and similar computations encountered in scientific problems

• Example for floating-point addition and subtraction

• Inputs are two normalized floating-point binary numbers

X = A x 2a

Y = B x 2b

• A and B are two fractions that represent the mantissas

• a and b are the exponents

Instruction Pipeline

• An instruction pipeline reads consecutive instructions from memory while previous instructions are

being executed in other segments

• This causes the instruction fetch and execute phases to overlap and perform simultaneous

operations

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 96 Dr. Nidamanuru Srinivasa Rao, Associate Professor

• If a branch out of sequence occurs, the pipeline must be emptied and all the instructions that have

been read from memory after the branch instruction mustbe discarded

• Consider a computer with an instruction fetch unit and an instruction execution unit forming a two

segment pipeline

• A FIFO buffer can be used for the fetch segment

• Thus, an instruction stream can be placed in a queue, waiting for decoding and processing by the

execution segment

• This reduces the average access time to memory for reading instructions

• Whenever there is space in the buffer, the control unit initiates the next instruction fetch phase

• The following steps are needed to process each instruction:

o Fetch the instruction from memory

o Decode the instruction

o Calculate the effective address

o Fetch the operands from memory

o Execute the instruction

o Store the result in the proper place

Up to four suboperations in the instruction cycle can overlap and up to four different instructions can

be in progress of being processed at the same time

• It is assumed that the processor has separate instruction and data memories

• Reasons for the pipeline to deviate from its normal operation are:

o Resource conflicts caused by access to memory by two segments at the same time.

o Data dependency conflicts arise when an instruction depends on the result of a previous

instruction, but his result is not yet available.

Types of Multiprocessors

There are mainly two types of multiprocessors i.e. symmetric and asymmetric multiprocessors.

Details about them are as follows −

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 97 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Symmetric Multiprocessors

In these types of systems, each processor contains a similar copy of the operating system and they

all communicate with each other. All the processors are in a peer to peer relationship i.e. no master -

slave relationship exists between them.

An example of the symmetric multiprocessing system is the Encore version of Unix for the

Multimax Computer.

Asymmetric Multiprocessors

In asymmetric systems, each processor is given a predefined task. There is a master processor that

gives instruction to all the other processors. Asymmetric multiprocessor system contains a master

slave relationship.

Asymmetric multiprocessor was the only type of multiprocessor available before symmetric

multiprocessors were created. Now also, this is the cheaper option.

Advantages of Multiprocessor Systems

There are multiple advantages to multiprocessor systems. Some of these are −

More reliable Systems

In a multiprocessor system, even if one processor fails, the system will not halt. This ability to

continue working despite hardware failure is known as graceful degradation. For example: If there

are 5 processors in a multiprocessor system and one of them fails, then also 4 processors are still

working. So the system only becomes slower and does not ground to a halt.

Enhanced Throughput

If multiple processors are working in tandem, then the throughput of the system increases i.e.

number of processes getting executed per unit of time increase. If there are N processors then the

throughput increases by an amount just under N.

More Economic Systems

Multiprocessor systems are cheaper than single processor systems in the long run because they

share the data storage, peripheral devices, power supplies etc. If there are multiple processes that

share data, it is better to schedule them on multiprocessor systems with shared data than have

different computer systems with multiple copies of the data.

Disadvantages of Multiprocessor Systems

There are some disadvantages as well to multiprocessor systems. Some of these are:

Increased Expense

Even though multiprocessor systems are cheaper in the long run than using multiple computer

systems, still they are quite expensive. It is much cheaper to buy a simple single processor system

than a multiprocessor system.

Complicated Operating System Required

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 98 Dr. Nidamanuru Srinivasa Rao, Associate Professor

There are multiple processors in a multiprocessor system that share peripherals, memory etc

Characteristics of Multiprocessor

There are the major characteristics of multiprocessors are as follows −

 Parallel Computing − This involves the simultaneous application of multiple processors.

These processors are developed using a single architecture to execute a common task. In

general, processors are identical and they work together in such a way that the users are under

the impression that they are the only users of the system. In reality, however, many users are

accessing the system at a given time.

 Distributed Computing − This involves the usage of a network of processors. Each

processor in this network can be considered as a computer in its own right and have the

capability to solve a problem. These processors are heterogeneous, and generally, one task is

allocated to a single processor.

 Supercomputing − This involves the usage of the fastest machines to resolve big and

computationally complex problems. In the past, supercomputing machines were vector

computers but at present, vector or parallel computing is accepted by most people.

 Pipelining − This is a method wherein a specific task is divided into several subtasks that

must be performed in a sequence. The functional units help in performing each subtask. The

units are attached serially and all the units work simultaneously.

 Vector Computing − It involves the usage of vector processors, wherein operations such as

‘multiplication’ are divided into many steps and are then applied to a stream of operands

(“vectors”).

 Systolic − This is similar to pipelining, but units are not arranged in a linear order. The steps

in systolic are normally small and more in number and performed in a lockstep manner. This

is more frequently applied in special-purpose hardware such as image or signal processors.

Interconnection structures :

The processors must be able to share a set of main memory modules & I/O devices in a

multiprocessor system. This sharing capability can be provided through interconnection structures.

The interconnection structure that are commonly used can be given as follows –

1. Time-shared / Common Bus

2. Cross bar Switch

3. Multiport Memory

4. Multistage Switching Network (Covered in 2nd part)

5. Hypercube System

In this article, we will cover Time shared / Common Bus in detail.

1. Time-shared / Common Bus (Interconnection structure in Multiprocessor System) :

In a multiprocessor system, the time shared bus interconnection provides a common

https://www.geeksforgeeks.org/crossbar-switch/
https://www.geeksforgeeks.org/multiport-memory-multiprocessor-system/
https://www.geeksforgeeks.org/hypercube-interconnection/#:~:text=Related%20Articles&text=Hypercube%20(or%20Binary%20n%2Dcube,a%20node%20of%20the%20cube.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 99 Dr. Nidamanuru Srinivasa Rao, Associate Professor

communication path connecting all the functional units like processor, I/O processor, memory unit

etc. The figure below shows the multiple processors with common communication path (single

bus).

Single-Bus Multiprocessor Organization

To communicate with any functional unit, processor needs the bus to transfer the data. To do so,

the processor first need to see that whether the bus is available / not by checking the status of the

bus. If the bus is used by some other functional unit, the status is busy, else free.

A processor can use bus only when the bus is free. The sender processor puts the address of the

destination on the bus & the destination unit identifies it. In order to communicate with any

functional unit, a command is issued to tell that unit, what work is to be done. The other

processors at that time will be either busy in internal operations or will sit free, waiting to get bus.

We can use a bus controller to resolve conflicts, if any. (Bus controller can set priority of different

functional units)

This Single-Bus Multiprocessor Organization is easiest to reconfigure & is simple. This

interconnection structure contains only passive elements. The bus interfaces of sender & receiver

units controls the transfer operation here.

To decide the access to common bus without conflicts, methods such as static & fixed priorities,

First-In-Out (FIFO) queues & daisy chains can be used.

Advantages –
 Inexpensive as no extra hardware is required such as switch.

 Simple & easy to configure as the functional units are directly connected to the bus .

Disadvantages –

 Major fight with this kind of configuration is that if malfunctioning occurs in any of the bus

interface circuits, complete system will fail.

 Decreased throughput —

At a time, only one processor can communicate with any other functional unit.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 100 Dr. Nidamanuru Srinivasa Rao, Associate Professor

 Increased arbitration logic —

As the number of processors & memory unit increases, the bus contention problem increases.

To solve the above disadvantages, we can use two uni-directional buses as :

Multiprocessor System with unidirectional buses

Both the buses are required in a single transfer operation. Here, the system complexity is increased

& the reliability is decreased, The solution is to use multiple bi-directional buses.

Multiple bi-directional buses :
The multiple bi-directional buses means that in the system there are multiple buses that are bi-

directional. It permits simultaneous transfers as many as buses are available. But here also the

complexity of the system is increased.

Multiple Bi-Directional Multiprocessor System

Apart from the organization, there are many factors affecting the performance of bus. They are –

https://www.geeksforgeeks.org/bus-arbitration-in-computer-organization/#:~:text=Related%20Articles&text=Bus%20Arbitration%20refers%20to%20the,known%20as%20a%20Bus%20master.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 101 Dr. Nidamanuru Srinivasa Rao, Associate Professor

 Number of active devices on the bus.

 Data width

 Error Detection method

 Synchronization of data transfer etc.

Advantages of Multiple bi-directional buses –

 Lowest cost for hardware as no extra device is needed such as switch.

 Modifying the hardware system configuration is easy.

 Less complex when compared to other interconnection schemes as there are only 2 buses & all

the components are connected via that buses.

Disadvantages of Multiple bi-directional buses –

 System Expansion will degrade the performance because as the number of functional unit

increases, more communication is required but at a time only 1 transfer can happen via 1 bus.

 Overall system capacity limits the transfer rate & If bus fails, whole system will fail.

 Suitable for small systems only.

2. Crossbar Switch :
A point is reached at which there is a separate path available for each memory module, if the

number of buses in common bus system is increased. Crossbar Switch (for multiprocessors)

provides separate path fro each module.

3.Multiport Memory :
In Multiport Memory system, the control, switching & priority arbitration logic are distributed

throughout the crossbar switch matrix which is distributed at the interfaces to the memory

modules.

4.Hypercube Interconnection :
This is a binary n-cube architecture. Here we can connect 2n processors and each of the processor

here forms a node of the cube. A node can be memory module, I/O interface also, not necessarily

processor. The processor at a node has communication path that is direct goes to n other nodes

(total 2n nodes). There are total 2n distinct n-bit binary addresses.

Conclusion :

Interconnection structure can decide overall system’s performance in a multi processor

environment. Although using common bus system is much easy & simple, but the availability of

only 1 path is its major drawback & if the bus fails, whole system fails. To overcome this &

improve overall performance, crossbar, multi port, hypercube & then multistage switch network

evolved.

Computer systems contain a number of buses at various levels to facilitate the transfer of

information between components. The CPU contains a number of internal buses for transferring

information between processor registers and ALU.

Inter Processor Arbitration

The processor, main memory and I/O devices can be interconnected by means of a common bus.

A bus is set of lines (wires) defined to transfer all bits of a word from a specified source to a

specified destination. Thus, bus provides a communication path for the transfer of data.

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 102 Dr. Nidamanuru Srinivasa Rao, Associate Professor

The bus includes data lines, address lines and control lines. Such a bus known as system bus.

Different types of arbitration: Serial (Daisy Chain) arbitration, Parallel arbitration, Dynamic

arbitration

Serial (Daisy Chain) arbitration

In this type of arbitration, processors can access bus based on priority. In serial arbitration, bus

access priority resolving based on the serial connection of the processors. This technique is

obtained from daisy chain (serial) connection of processors. The serial priority resolving

technique is obtained from daisy-chain connection similar to the daisy chain priority interrupt

logic. The processors connected to the system bus are assigned priority according to their

position along the priority control line.

When multiple devices concurrently request the use of the bus, the device with the highest

priority is granted access to it. Each processor has its own bus arbiter logic with priority-in and

priority-out lines. The priority out (PO) of each arbiter is connected to the priority in (PI) of the

next-lower-priority arbiter. The PI of the highest-priority unit is maintained at a logic value 1.

The highest-priority unit in the system will always receive access to the system bus when it

requests it. The processor whose arbiter has a PI = 1 and PO = 0. That processor accesses the

system bus.

Advantages

Simple and cheaper method

Least number of lines.

Disadvantages

Higher delay

Priority of the processor is fixed

Not reliable

Inter Process Communication (IPC)

A process can be of two types:

 Independent process.

 Co-operating process.

An independent process is not affected by the execution of other processes while a co-operating

process can be affected by other executing processes. Though one can think that those processes,

which are running independently, will execute very efficiently, in reality, there are many situations

when co-operative nature can be utilized for increasing computational speed, convenience, and

modularity. Inter-process communication (IPC) is a mechanism that allows processes to

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 103 Dr. Nidamanuru Srinivasa Rao, Associate Professor

communicate with each other and synchronize their actions. The communication between these

processes can be seen as a method of co-operation between them. Processes can communicate with

each other through both:

1. Shared Memory

2. Message passing

Figure 1 below shows a basic structure of communication between processes via the shared

memory method and via the message passing method.

An operating system can implement both methods of communication. First, we will discuss the

shared memory methods of communication and then message passing. Communication between

processes using shared memory requires processes to share some variable, and it completely

depends on how the programmer will implement it. One way of communication using shared

memory can be imagined like this: Suppose process1 and process2 are executing simultaneously,

and they share some resources or use some information from another process. Process1 generates

information about certain computations or resources being used and keeps it as a record in shared

memory. When process2 needs to use the shared information, it will check in the record stored in

shared memory and take note of the information generated by process1 and act accordingly.

Processes can use shared memory for extracting information as a record from another process as

well as for delivering any specific information to other processes.

Let’s discuss an example of communication between processes using the shared memory method.

i) Shared Memory Method

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 104 Dr. Nidamanuru Srinivasa Rao, Associate Professor

Ex: Producer-Consumer problem

There are two processes: Producer and Consumer. The producer produces some items and the

Consumer consumes that item. The two processes share a common space or memory location

known as a buffer where the item produced by the Producer is stored and from which the

Consumer consumes the item if needed. There are two versions of this problem: the first one is

known as the unbounded buffer problem in which the Producer can keep on producing items and

there is no limit on the size of the buffer, the second one is known as the bounded buffer problem

in which the Producer can produce up to a certain number of items before it starts waiting for

Consumer to consume it. We will discuss the bounded buffer problem. First, the Producer and the

Consumer will share some common memory, then the producer will start producing items. If the

total produced item is equal to the size of the buffer, the producer will wait to get it consumed by

the Consumer. Similarly, the consumer will first check for the availability of the item. If no item is

available, the Consumer will wait for the Producer to produce it. If there are items available,

Consumer will consume them. The pseudo-code to demonstrate is provided below:

Shared Data between the two Processes

ii) Messaging Passing Method
Now, We will start our discussion of the communication between processes via message passing.

In this method, processes communicate with each other without using any kind of shared memory.

If two processes p1 and p2 want to communicate with each other, they proceed as follows:

 Establish a communication link (if a link already exists, no need to establish it again.)

 Start exchanging messages using basic primitives.

We need at least two primitives:

– send(message, destination) or send(message)

– receive(message, host) or receive(message)

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 105 Dr. Nidamanuru Srinivasa Rao, Associate Professor

The message size can be of fixed size or of variable size. If it is of fixed size, it is easy for an OS

designer but complicated for a programmer and if it is of variable size then it is easy for a

programmer but complicated for the OS designer. A standard message can have two parts: header

and body.

The header part is used for storing message type, destination id, source id, message length, and

control information. The control information contains information like what to do if runs out of

buffer space, sequence number, priority. Generally, message is sent using FIFO style.

Message Passing through Communication Link.
Direct and Indirect Communication link

Now, We will start our discussion about the methods of implementing communication links. While

implementing the link, there are some questions that need to be kept in mind like :

1. How are links established?

2. Can a link be associated with more than two processes?

3. How many links can there be between every pair of communicating processes?

4. What is the capacity of a link? Is the size of a message that the link can accommodate fixed or

variable?

5. Is a link unidirectional or bi-directional?

A link has some capacity that determines the number of messages that can reside in it temporarily

for which every link has a queue associated with it which can be of zero capacity, bounded

capacity, or unbounded capacity. In zero capacity, the sender waits until the receiver informs the

sender that it has received the message. In non-zero capacity cases, a process does not know

whether a message has been received or not after the send operation. For this, the sender must

communicate with the receiver explicitly. Implementation of the link depends on the situation, it

can be either a direct communication link or an in-directed communication link.

Direct Communication links are implemented when the processes use a specific process

identifier for the communication, but it is hard to identify the sender ahead of time.

For example the print server.
In-direct Communication is done via a shared mailbox (port), which consists of a queue of

messages. The sender keeps the message in mailbox and the receiver picks them up.

Message Passing through Exchanging the Messages.
Synchronous and Asynchronous Message Passing:

A process that is blocked is one that is waiting for some event, such as a resource becoming

available or the completion of an I/O operation. IPC is possible between the processes on same

computer as well as on the processes running on different computer i.e. in networked/distributed

system. In both cases, the process may or may not be blocked while sending a message or

attempting to receive a message so message passing may be blocking or non-blocking. Blocking is

considered synchronous and blocking send means the sender will be blocked until the message is

received by receiver. Similarly, blocking receive has the receiver block until a message is

available. Non-blocking is considered asynchronous and Non-blocking send has the sender sends

the message and continue. Similarly, Non-blocking receive has the receiver receive a valid

message or null. After a careful analysis, we can come to a conclusion that for a sender it is more

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 106 Dr. Nidamanuru Srinivasa Rao, Associate Professor

natural to be non-blocking after message passing as there may be a need to send the message to

different processes. However, the sender expects acknowledgment from the receiver in case the

send fails. Similarly, it is more natural for a receiver to be blocking after issuing the receive as the

information from the received message may be used for further execution. At the same time, if the

message send keep on failing, the receiver will have to wait indefinitely. That is why we also

consider the other possibility of message passing. There are basically three preferred

combinations:

 Blocking send and blocking receive

 Non-blocking send and Non-blocking receive

 Non-blocking send and Blocking receive (Mostly used)

In Direct message passing, The process which wants to communicate must explicitly name the

recipient or sender of the communication.

e.g. send(p1, message) means send the message to p1.

Similarly, receive(p2, message) means to receive the message from p2.

In this method of communication, the communication link gets established automatically, which

can be either unidirectional or bidirectional, but one link can be used between one pair of the

sender and receiver and one pair of sender and receiver should not possess more than one pair of

links. Symmetry and asymmetry between sending and receiving can also be implemented i.e.

either both processes will name each other for sending and receiving the messages or only the

sender will name the receiver for sending the message and there is no need for the receiver for

naming the sender for receiving the message. The problem with this method of communication is

that if the name of one process changes, this method will not work.

In Indirect message passing, processes use mailboxes (also referred to as ports) for sending and

receiving messages. Each mailbox has a unique id and processes can communicate only if they

share a mailbox. Link established only if processes share a common mailbox and a single link can

be associated with many processes. Each pair of processes can share several communication links

and these links may be unidirectional or bi-directional. Suppose two processes want to

communicate through Indirect message passing, the required operations are: create a mailbox, use

this mailbox for sending and receiving messages, then destroy the mailbox. The standard

primitives used are: send(A, message) which means send the message to mailbox A. The primitive

for the receiving the message also works in the same way e.g. received (A, message). There is a

problem with this mailbox implementation. Suppose there are more than two processes sharing the

same mailbox and suppose the process p1 sends a message to the mailbox, which process will be

the receiver? This can be solved by either enforcing that only two processes can share a single

mailbox or enforcing that only one process is allowed to execute the receive at a given time or

select any process randomly and notify the sender about the receiver. A mailbox can be made

private to a single sender/receiver pair and can also be shared between multiple sender/receiver

pairs. Port is an implementation of such mailbox that can have multiple senders and a single

receiver. It is used in client/server applications (in this case the server is the receiver). The port is

owned by the receiving process and created by OS on the request of the receiver process and can

be destroyed either on request of the same receiver processor when the receiver terminates itself.

Enforcing that only one process is allowed to execute the receive can be done using the concept of

mutual exclusion. Mutex mailbox is created which is shared by n process. The sender is non-

COMPUTER ORGANIZATION AND ARCHITECTURE (CS2104PC)

Dept of CSE, NRCM Page 107 Dr. Nidamanuru Srinivasa Rao, Associate Professor

blocking and sends the message. The first process which executes the receive will enter in the

critical section and all other processes will be blocking and will wait.

Now, let’s discuss the Producer-Consumer problem using the message passing concept. The

producer places items (inside messages) in the mailbox and the consumer can consume an item

when at least one message present in the mailbox. The code is given below:

Examples of IPC systems

1. Posix : uses shared memory method.

2. Mach : uses message passing

3. Windows XP : uses message passing using local procedural calls

Communication in client/server Architecture:
There are various mechanism:

 Pipe

 Socket

 Remote Procedural calls (RPCs)

Cache Coherence.

In computer architecture, cache coherence is the uniformity of shared resource data that ends up

stored in multiple local caches. When clients in a system maintain caches of a common memory

resource, problems may arise with incoherent data, which is particularly the case with CPUs in

a multiprocessing system.

In the illustration on the right, consider both the clients have a cached copy of a particular memory

block from a previous read. Suppose the client on the bottom updates/changes that memory block,

the client on the top could be left with an invalid cache of memory without any notification of the

change. Cache coherence is intended to manage such conflicts by maintaining a coherent view of the

data values in multiple caches.

https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/CPU_cache
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Multiprocessing

1

Computer Organization Computer Architecture

Dr.Chao Tan,
Carnegie Mellon University

2

Computer Organization Computer Architecture

Chap. 1: Digital Logic Circuits

• Logic Gates, • Boolean Algebra
• Map Simplification, • Combinational Circuits
• Filp-Flops, • Sequential Circuits

Chap. 2: Digital Components

• Integrated Circuits, • Decoders, • Multiplexers
• Registers, • Shift Registers, • Binary Counters
• Memory Unit

Chap. 3: Data Representation

• Data Types, • Complements
• Fixed Point Representation
• Floating Point Representation
• Other Binary Codes, • Error Detection Codes

3

Computer Organization Computer Architecture

Chap. 4: Register Transfer and Microoperations

• Register Transfer Language, • Register Transfer
• Bus and Memory Transfers
• Arithmetic Microoperations
• Logic Microoperations, • Shift Microoperations
• Arithmetic Logic Shift Unit

Chap. 5: Basic Computer Organization and Design

• Instruction Codes, • Computer Registers
• Computer Instructions, • Timing and Control
• Instruction Cycle,
• Memory Reference Instructions
• Input-Output and Interrupt
• Complete Computer Description
• Design of Basic Computer
• Design of Accumulator Logic

4

Computer Organization Computer Architecture

Chap. 6: Programming the Basic Computer

• Machine Language, • Assembly Language
• Assembler, • Program Loops
• Programming Arithmetic and Logic Operations
• Subroutines, • Input-Output Programming

Chap. 7: Microprogrammed Control

• Control Memory, • Sequencing Microinstructions
• Microprogram Example, • Design of Control Unit
• Microinstruction Format

Chap. 8: Central Processing Unit

• General Register Organization
• Stack Organization, • Instruction Formats
• Addressing Modes
• Data Transfer and Manipulation
• Program Control
• Reduced Instruction Set Computer

5

Computer Organization Computer Architecture

Chap. 9: Pipeline and Vector Processing

• Parallel Processing, • Pipelining
• Arithmetic Pipeline, • Instruction Pipeline
• RISC Pipeline, • Vector Processing

Chap. 10: Computer Arithmetic

• Arithmetic with Signed-2's Complement Numbers

• Multiplication and Division Algorithms

• Floating-Point Arithmetic Operations

• Decimal Arithmetic Unit

• Decimal Arithmetic Operations

Chap. 11: Input-Output Organization

• Peripheral Devices, • Input-Output Interface
• Asynchronous Data Transfer, • Modes of Transfer
• Priority Interrupt, • Direct Memory Access

6

Computer Organization Computer Architecture

Chap. 12: Memory Organization

• Memory Hierarchy, • Main Memory
• Auxiliary Memory. • Associative Memory
• Cache Memory, • Virtual Memory

Chap. 13: Multiprocessors ()

• Characteristics of Multiprocessors
• Interconnection Structures
• Interprocessor Arbitration
• Interprocessor Communication/Synchronization
• Cache Coherence

7

Computer Organization Computer Architecture

SIMPLE DIGITAL SYSTEMS

• Combinational and sequential circuits (learned in Chapters 1 and 2)

can be used to create simple digital systems.

• These are the low-level building blocks of a digital computer.

• Simple digital systems are frequently characterized in terms of

– the registers they contain, and

– the operations that they perform.

• Typically,

– What operations are performed on the data in the registers

– What information is passed between registers

Register Transfer & -operations

8

Computer Organization Computer Architecture

REGISTER TRANSFER AND MICROOPERATIONS

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

Register Transfer & -operations

9

Computer Organization Computer Architecture

MICROOPERATIONS (1)

Register Transfer Language

• The operations on the data in registers are called
microoperations.

• The functions built into registers are examples of
microoperations

– Shift

– Load

– Clear

– Increment

– …

Register Transfer & -operations

10

Computer Organization Computer Architecture

MICROOPERATION (2)

An elementary operation performed (during
one clock pulse), on the information stored
in one or more registers

R  f(R, R)

f: shift, load, clear, increment, add, subtract, complement,

and, or, xor, …

ALU
(f)

Registers
(R)

1 clock cycle

Register Transfer LanguageRegister Transfer & -operations

11

Computer Organization Computer Architecture

ORGANIZATION OF A DIGITAL SYSTEM

- Set of registers and their functions

- Microoperations set

Set of allowable microoperations provided
by the organization of the computer

- Control signals that initiate the sequence of
microoperations (to perform the functions)

• Definition of the (internal) organization of a computer

Register Transfer LanguageRegister Transfer & -operations

12

Computer Organization Computer Architecture

REGISTER TRANSFER LEVEL

Register Transfer Language

• Viewing a computer, or any digital system, in this way is
called the register transfer level

• This is because we’re focusing on

– The system’s registers

– The data transformations in them, and

– The data transfers between them.

Register Transfer & -operations

13

Computer Organization Computer Architecture

REGISTER TRANSFER LANGUAGE

Register Transfer Language

• Rather than specifying a digital system in words, a specific
notation is used, register transfer language

• For any function of the computer, the register transfer
language can be used to describe the (sequence of)
microoperations

• Register transfer language

– A symbolic language

– A convenient tool for describing the internal organization of digital
computers

– Can also be used to facilitate the design process of digital systems.

Register Transfer & -operations

14

Computer Organization Computer Architecture

DESIGNATION OF REGISTERS

Register Transfer Language

• Registers are designated by capital letters, sometimes
followed by numbers (e.g., A, R13, IR)

• Often the names indicate function:

– MAR - memory address register

– PC - program counter

– IR - instruction register

• Registers and their contents can be viewed and represented in
various ways

– A register can be viewed as a single entity:

– Registers may also be represented showing the bits of data they contain

MAR

Register Transfer & -operations

15

Computer Organization Computer Architecture

DESIGNATION OF REGISTERS

Register Transfer Language

R1
Register

Numbering of bits

Showing individual bits

Subfields

PC(H) PC(L)
15 8 7 0

- a register

- portion of a register

- a bit of a register

• Common ways of drawing the block diagram of a register

7 6 5 4 3 2 1 0

R2
15 0

• Designation of a register

Register Transfer & -operations

16

Computer Organization Computer Architecture

REGISTER TRANSFER

Register Transfer

• Copying the contents of one register to another is a register
transfer

• A register transfer is indicated as

R2  R1

– In this case the contents of register R2 are copied (loaded) into
register R1

– A simultaneous transfer of all bits from the source R1 to the
destination register R2, during one clock pulse

– Note that this is a non-destructive; i.e. the contents of R1 are not
altered by copying (loading) them to R2

Register Transfer & -operations

17

Computer Organization Computer Architecture

REGISTER TRANSFER

Register Transfer

• A register transfer such as

R3  R5

Implies that the digital system has

– the data lines from the source register (R5) to the destination
register (R3)

– Parallel load in the destination register (R3)

– Control lines to perform the action

Register Transfer & -operations

18

Computer Organization Computer Architecture

CONTROL FUNCTIONS

Register Transfer

• Often actions need to only occur if a certain condition is true

• This is similar to an “if” statement in a programming language

• In digital systems, this is often done via a control signal, called
a control function

– If the signal is 1, the action takes place

• This is represented as:

P: R2  R1

Which means “if P = 1, then load the contents of register R1 into
register R2”, i.e., if (P = 1) then (R2  R1)

Register Transfer & -operations

19

Computer Organization Computer Architecture

HARDWARE IMPLEMENTATION OF CONTROLLED TRANSFERS

Implementation of controlled transfer

P: R2 R1

Block diagram

Timing diagram

Clock

Register Transfer

Transfer occurs here

R2

R1

Control
Circuit

LoadP

n

Clock

Load

t t+1

• The same clock controls the circuits that generate the control function
and the destination register

• Registers are assumed to use positive-edge-triggered flip-flops

Register Transfer & -operations

20

Computer Organization Computer Architecture

SIMULTANEOUS OPERATIONS

Register Transfer

• If two or more operations are to occur
simultaneously, they are separated with commas

P: R3  R5, MAR  IR

• Here, if the control function P = 1, load the contents
of R5 into R3, and at the same time (clock), load the
contents of register IR into register MAR

Register Transfer & -operations

21

Computer Organization Computer Architecture

BASIC SYMBOLS FOR REGISTER TRANSFERS

Capital letters Denotes a register MAR, R2

& numerals

Parentheses () Denotes a part of a register R2(0-7), R2(L)

Arrow  Denotes transfer of information R2  R1

Colon : Denotes termination of control function P:

Comma , Separates two micro-operations A  B, B  A

Symbols Description Examples

Register TransferRegister Transfer & -operations

22

Computer Organization Computer Architecture

CONNECTING REGISTRS

Register Transfer

• In a digital system with many registers, it is impractical to
have data and control lines to directly allow each register
to be loaded with the contents of every possible other
registers

• To completely connect n registers  n(n-1) lines

• O(n2) cost

– This is not a realistic approach to use in a large digital system

• Instead, take a different approach

• Have one centralized set of circuits for data transfer – the
bus

• Have control circuits to select which register is the source,
and which is the destination

Register Transfer & -operations

23

Computer Organization Computer Architecture

BUS AND BUS TRANSFER

Bus is a path(of a group of wires) over which information is

transferred, from any of several sources to any of several destinations.

From a register to bus: BUS  R

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Register A Register B Register C Register D

B C D1 1 1

4 x1
MUX

B C D2 2 2

4 x1
MUX

B C D3 3 3

4 x1
MUX

B C D4 4 4

4 x1
MUX

4-line bus

x

y
select

0 0 0 0

Register A Register B Register C Register D

Bus lines

Bus and Memory TransfersRegister Transfer & -operations

24

Computer Organization Computer Architecture

TRANSFER FROM BUS TO A DESTINATION REGISTER

Three-State Bus Buffers

Bus line with three-state buffers

Reg. R0 Reg. R1 Reg. R2 Reg. R3

Bus lines

2 x 4

Decoder

Load

D0 D1 D2 D3z

w
Select E (enable)

Output Y=A if C=1
High-impedence if C=0

Normal input A

Control input C

Select

Enable

0
1
2
3

S0

S1

A0

B0

C0

D0

Bus line for bit 0

Bus and Memory TransfersRegister Transfer & -operations

25

Computer Organization Computer Architecture

BUS TRANSFER IN RTL

Bus and Memory Transfers

• Depending on whether the bus is to be mentioned
explicitly or not, register transfer can be indicated as
either

or

• In the former case the bus is implicit, but in the latter, it is
explicitly indicated

R2 R1

BUS R1, R2  BUS

Register Transfer & -operations

26

Computer Organization Computer Architecture

MEMORY (RAM)

Bus and Memory Transfers

• Memory (RAM) can be thought as a sequential circuits
containing some number of registers

• These registers hold the words of memory

• Each of the r registers is indicated by an address

• These addresses range from 0 to r-1

• Each register (word) can hold n bits of data

• Assume the RAM contains r = 2k words. It needs the
following

– n data input lines

– n data output lines

– k address lines

– A Read control line

– A Write control line

data input lines

data output lines

n

n

k

address lines

Read

Write

RAM
unit

Register Transfer & -operations

27

Computer Organization Computer Architecture

MEMORY TRANSFER

Bus and Memory Transfers

• Collectively, the memory is viewed at the register level as
a device, M.

• Since it contains multiple locations, we must specify
which address in memory we will be using

• This is done by indexing memory references

• Memory is usually accessed in computer systems by
putting the desired address in a special register, the
Memory Address Register (MAR, or AR)

• When memory is accessed, the contents of the MAR get
sent to the memory unit’s address lines

AR
Memory

unit

Read

Write

Data inData out

M

Register Transfer & -operations

28

Computer Organization Computer Architecture

MEMORY READ

Bus and Memory Transfers

• To read a value from a location in memory and load it into
a register, the register transfer language notation looks
like this:

• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Read (= 1) gets sent to the memory unit

– The contents of the specified address are put on the memory’s
output data lines

– These get sent over the bus to be loaded into register R1

R1  M[MAR]

Register Transfer & -operations

29

Computer Organization Computer Architecture

MEMORY WRITE

Bus and Memory Transfers

• To write a value from a register to a location in memory
looks like this in register transfer language:

• This causes the following to occur

– The contents of the MAR get sent to the memory address lines

– A Write (= 1) gets sent to the memory unit

– The values in register R1 get sent over the bus to the data input lines
of the memory

– The values get loaded into the specified address in the memory

M[MAR]  R1

Register Transfer & -operations

30

Computer Organization Computer Architecture

SUMMARY OF R. TRANSFER MICROOPERATIONS

Bus and Memory Transfers

A  B Transfer content of reg. B into reg. A

AR  DR(AD) Transfer content of AD portion of reg. DR into reg. AR

A  constant Transfer a binary constant into reg. A

ABUS  R1, Transfer content of R1 into bus A and, at the same time,

R2  ABUS transfer content of bus A into R2

AR Address register

DR Data register

M[R] Memory word specified by reg. R

M Equivalent to M[AR]

DR  M Memory read operation: transfers content of

memory word specified by AR into DR

M  DR Memory write operation: transfers content of

DR into memory word specified by AR

Register Transfer & -operations

31

Computer Organization Computer Architecture

MICROOPERATIONS

• Computer system microoperations are of four types:

- Register transfer microoperations

- Arithmetic microoperations

- Logic microoperations

- Shift microoperations

Arithmetic MicrooperationsRegister Transfer & -operations

32

Computer Organization Computer Architecture

ARITHMETIC MICROOPERATIONS

Summary of Typical Arithmetic Micro-Operations

Arithmetic Microoperations

R3  R1 + R2 Contents of R1 plus R2 transferred to R3

R3  R1 - R2 Contents of R1 minus R2 transferred to R3

R2  R2’ Complement the contents of R2

R2  R2’+ 1 2's complement the contents of R2 (negate)

R3  R1 + R2’+ 1 subtraction

R1  R1 + 1 Increment

R1  R1 - 1 Decrement

• The basic arithmetic microoperations are
– Addition

– Subtraction

– Increment

– Decrement

• The additional arithmetic microoperations are
– Add with carry

– Subtract with borrow

– Transfer/Load

– etc. …

Register Transfer & -operations

33

Computer Organization Computer Architecture

BINARY ADDER / SUBTRACTOR / INCREMENTER

FA

B0 A0

S0

C0FA

B1 A1

S1

C1FA

B2 A2

S2

C2FA

B3 A3

S3

C3

C4

Binary Adder-Subtractor

FA

B0 A0

S0

C0C1FA

B1 A1

S1

C2FA

B2 A2

S2

C3FA

B3 A3

S3C4

M

Binary Incrementer

HA

x y

C S

A0 1

S0

HA

x y

C S

A1

S1

HA

x y

C S

A2

S2

HA

x y

C S

A3

S3C4

Binary Adder

Arithmetic MicrooperationsRegister Transfer & -operations

34

Computer Organization Computer Architecture

ARITHMETIC CIRCUIT

S1
S0
0
1
2
3

4x1
MUX

X0

Y0

C0

C1

D0FA

S1
S0
0
1
2
3

4x1
MUX

X1

Y1

C1

C2

D1FA

S1
S0
0
1
2
3

4x1
MUX

X2

Y2

C2

C3

D2FA

S1
S0
0
1
2
3

4x1
MUX

X3

Y3

C3

C4

D3FA

Cout

A0

B0

A1

B1

A2

B2

A3

B3

0 1

S0
S1
Cin

S1 S0 Cin Y Output Microoperation

0 0 0 B D = A + B Add

0 0 1 B D = A + B + 1 Add with carry

0 1 0 B’ D = A + B’ Subtract with borrow

0 1 1 B’ D = A + B’+ 1 Subtract

1 0 0 0 D = A Transfer A

1 0 1 0 D = A + 1 Increment A

1 1 0 1 D = A - 1 Decrement A

1 1 1 1 D = A Transfer A

Arithmetic MicrooperationsRegister Transfer & -operations

35

Computer Organization Computer Architecture

LOGIC MICROOPERATIONS

Logic Microoperations

• Specify binary operations on the strings of bits in registers

– Logic microoperations are bit-wise operations, i.e., they work on the
individual bits of data

– useful for bit manipulations on binary data

– useful for making logical decisions based on the bit value

• There are, in principle, 16 different logic functions that can
be defined over two binary input variables

• However, most systems only implement four of these

– AND (), OR (), XOR (), Complement/NOT

• The others can be created from combination of these

0 0 0 0 0 … 1 1 1
0 1 0 0 0 … 1 1 1
1 0 0 0 1 … 0 1 1
1 1 0 1 0 … 1 0 1

A B F0 F1 F2 … F13 F14 F15

Register Transfer & -operations

36

Computer Organization Computer Architecture

LIST OF LOGIC MICROOPERATIONS

• List of Logic Microoperations

- 16 different logic operations with 2 binary vars.

- n binary vars → functions2 2 n

• Truth tables for 16 functions of 2 variables and the

corresponding 16 logic micro-operations
Boolean

Function

Micro-

Operations
Name

x 0 0 1 1

y 0 1 0 1

Logic Microoperations

0 0 0 0 F0 = 0 F  0 Clear
0 0 0 1 F1 = xy F  A  B AND
0 0 1 0 F2 = xy' F  A  B’
0 0 1 1 F3 = x F  A Transfer A
0 1 0 0 F4 = x'y F  A’ B
0 1 0 1 F5 = y F  B Transfer B
0 1 1 0 F6 = x  y F  A  B Exclusive-OR
0 1 1 1 F7 = x + y F  A  B OR
1 0 0 0 F8 = (x + y)' F  A  B)’ NOR
1 0 0 1 F9 = (x  y)' F  (A  B)’ Exclusive-NOR
1 0 1 0 F10 = y' F  B’ Complement B
1 0 1 1 F11 = x + y' F  A  B
1 1 0 0 F12 = x' F  A’ Complement A
1 1 0 1 F13 = x' + y F  A’ B
1 1 1 0 F14 = (xy)' F  (A  B)’ NAND
1 1 1 1 F15 = 1 F  all 1's Set to all 1's

Register Transfer & -operations

37

Computer Organization Computer Architecture

HARDWARE IMPLEMENTATION OF LOGIC MICROOPERATIONS

0 0 F = A  B AND

0 1 F = AB OR

1 0 F = A  B XOR

1 1 F = A’ Complement

S1 S0 Output -operation

Function table

Logic Microoperations

B

A

S

S

F

1

0

i

i

i
0

1

2

3

4 X 1
MUX

Select

Register Transfer & -operations

38

Computer Organization Computer Architecture

APPLICATIONS OF LOGIC MICROOPERATIONS

Logic Microoperations

• Logic microoperations can be used to manipulate individual
bits or a portions of a word in a register

• Consider the data in a register A. In another register, B, is bit
data that will be used to modify the contents of A

– Selective-set A  A + B

– Selective-complement A  A  B

– Selective-clear A  A • B’

– Mask (Delete) A  A • B

– Clear A  A  B

– Insert A  (A • B) + C

– Compare A  A  B

– . . .

Register Transfer & -operations

39

Computer Organization Computer Architecture

SELECTIVE SET

Logic Microoperations

• In a selective set operation, the bit pattern in B is used to set
certain bits in A

1 1 0 0 At

1 0 1 0 B

1 1 1 0 At+1 (A  A + B)

• If a bit in B is set to 1, that same position in A gets set to 1,
otherwise that bit in A keeps its previous value

Register Transfer & -operations

40

Computer Organization Computer Architecture

SELECTIVE COMPLEMENT

Logic Microoperations

• In a selective complement operation, the bit pattern in B is
used to complement certain bits in A

1 1 0 0 At

1 0 1 0 B

0 1 1 0 At+1 (A  A  B)

• If a bit in B is set to 1, that same position in A gets
complemented from its original value, otherwise it is
unchanged

Register Transfer & -operations

41

Computer Organization Computer Architecture

SELECTIVE CLEAR

Logic Microoperations

• In a selective clear operation, the bit pattern in B is used to
clear certain bits in A

1 1 0 0 At

1 0 1 0 B

0 1 0 0 At+1 (A  A  B’)

• If a bit in B is set to 1, that same position in A gets set to 0,
otherwise it is unchanged

Register Transfer & -operations

42

Computer Organization Computer Architecture

MASK OPERATION

Logic Microoperations

• In a mask operation, the bit pattern in B is used to clear
certain bits in A

1 1 0 0 At

1 0 1 0 B

1 0 0 0 At+1 (A  A  B)

• If a bit in B is set to 0, that same position in A gets set to 0,
otherwise it is unchanged

Register Transfer & -operations

43

Computer Organization Computer Architecture

CLEAR OPERATION

Logic Microoperations

• In a clear operation, if the bits in the same position in A and
B are the same, they are cleared in A, otherwise they are set
in A

1 1 0 0 At

1 0 1 0 B

0 1 1 0 At+1 (A  A  B)

Register Transfer & -operations

44

Computer Organization Computer Architecture

INSERT OPERATION

Logic Microoperations

• An insert operation is used to introduce a specific bit pattern
into A register, leaving the other bit positions unchanged

• This is done as

– A mask operation to clear the desired bit positions, followed by

– An OR operation to introduce the new bits into the desired
positions

– Example

» Suppose you wanted to introduce 1010 into the low order
four bits of A: 1101 1000 1011 0001 A (Original)

1101 1000 1011 1010 A (Desired)

» 1101 1000 1011 0001 A (Original)

1111 1111 1111 0000 Mask

1101 1000 1011 0000 A (Intermediate)

0000 0000 0000 1010 Added bits

1101 1000 1011 1010 A (Desired)

Register Transfer & -operations

45

Computer Organization Computer Architecture

SHIFT MICROOPERATIONS

Shift Microoperations

• There are three types of shifts

– Logical shift

– Circular shift

– Arithmetic shift

• What differentiates them is the information that goes into
the serial input

Serial
input

• A right shift operation

• A left shift operation Serial
input

Register Transfer & -operations

46

Computer Organization Computer Architecture

LOGICAL SHIFT

Shift Microoperations

• In a logical shift the serial input to the shift is a 0.

• A right logical shift operation:

• A left logical shift operation:

• In a Register Transfer Language, the following notation is used

– shl for a logical shift left

– shr for a logical shift right

– Examples:

» R2  shr R2

» R3  shl R3

0

0

Register Transfer & -operations

47

Computer Organization Computer Architecture

CIRCULAR SHIFT

Shift Microoperations

• In a circular shift the serial input is the bit that is shifted out of
the other end of the register.

• A right circular shift operation:

• A left circular shift operation:

• In a RTL, the following notation is used
– cil for a circular shift left

– cir for a circular shift right

– Examples:

» R2  cir R2

» R3  cil R3

Register Transfer & -operations

48

Computer Organization Computer Architecture

ARITHMETIC SHIFT

Shift Microoperations

• An arithmetic shift is meant for signed binary numbers
(integer)

• An arithmetic left shift multiplies a signed number by two

• An arithmetic right shift divides a signed number by two

• The main distinction of an arithmetic shift is that it must keep
the sign of the number the same as it performs the
multiplication or division

• A right arithmetic shift operation:

• A left arithmetic shift operation:
0

sign
bit

sign
bit

Register Transfer & -operations

49

Computer Organization Computer Architecture

ARITHMETIC SHIFT

Shift Microoperations

• An left arithmetic shift operation must be checked for the
overflow

0

V
Before the shift, if the leftmost two
bits differ, the shift will result in an
overflow

• In a RTL, the following notation is used
– ashl for an arithmetic shift left

– ashr for an arithmetic shift right

– Examples:

» R2  ashr R2

» R3  ashl R3

sign
bit

Register Transfer & -operations

50

Computer Organization Computer Architecture

HARDWARE IMPLEMENTATION OF SHIFT MICROOPERATIONS

Shift Microoperations

S

0
1

H0MUX

S

0
1

H1MUX

S

0
1

H2MUX

S

0
1

H3MUX

Select
0 for shift right (down)
1 for shift left (up)Serial

input (IR)

A0

A1

A2

A3

Serial
input (IL)

Register Transfer & -operations

51

Computer Organization Computer Architecture

ARITHMETIC LOGIC SHIFT UNIT

S3 S2 S1 S0 Cin Operation Function
0 0 0 0 0 F = A Transfer A
0 0 0 0 1 F = A + 1 Increment A
0 0 0 1 0 F = A + B Addition
0 0 0 1 1 F = A + B + 1 Add with carry
0 0 1 0 0 F = A + B’ Subtract with borrow
0 0 1 0 1 F = A + B’+ 1 Subtraction
0 0 1 1 0 F = A - 1 Decrement A
0 0 1 1 1 F = A TransferA
0 1 0 0 X F = A  B AND
0 1 0 1 X F = A B OR
0 1 1 0 X F = A  B XOR
0 1 1 1 X F = A’ Complement A
1 0 X X X F = shr A Shift right A into F
1 1 X X X F = shl A Shift left A into F

Shift Microoperations

Arithmetic
Circuit

Logic
Circuit

C

C 4 x 1
MUX

Select

0
1
2
3

F

S3
S2
S1
S0

B
A

i

A

D

A

E

shr
shl

i+1 i

i
i

i+1
i-1

i

i

Register Transfer & -operations

52

Computer Organization Computer Architecture

BASIC COMPUTER ORGANIZATION AND DESIGN

• Instruction Codes

• Computer Registers

• Computer Instructions

• Timing and Control

• Instruction Cycle

• Memory Reference Instructions

• Input-Output and Interrupt

• Complete Computer Description

• Design of Basic Computer

• Design of Accumulator Logic

Basic Computer Organization & Design

53

Computer Organization Computer Architecture

INTRODUCTION

• Every different processor type has its own design (different
registers, buses, microoperations, machine instructions, etc)

• Modern processor is a very complex device

• It contains

– Many registers

– Multiple arithmetic units, for both integer and floating point calculations

– The ability to pipeline several consecutive instructions to speed execution

– Etc.

• However, to understand how processors work, we will start with
a simplified processor model

• This is similar to what real processors were like ~25 years ago

• M. Morris Mano introduces a simple processor model he calls
the Basic Computer

• We will use this to introduce processor organization and the
relationship of the RTL model to the higher level computer
processor

Basic Computer Organization & Design

54

Computer Organization Computer Architecture

THE BASIC COMPUTER

• The Basic Computer has two components, a processor and
memory

• The memory has 4096 words in it

– 4096 = 212, so it takes 12 bits to select a word in memory

• Each word is 16 bits long

CPU RAM
0

4095

015

Basic Computer Organization & Design

55

Computer Organization Computer Architecture

INSTRUCTIONS

Instruction codes

• Program

– A sequence of (machine) instructions

• (Machine) Instruction

– A group of bits that tell the computer to perform a specific operation

(a sequence of micro-operation)

• The instructions of a program, along with any needed data

are stored in memory

• The CPU reads the next instruction from memory

• It is placed in an Instruction Register (IR)

• Control circuitry in control unit then translates the

instruction into the sequence of microoperations

necessary to implement it

Basic Computer Organization & Design

56

Computer Organization Computer Architecture

INSTRUCTION FORMAT

Instruction codes

• A computer instruction is often divided into two parts

– An opcode (Operation Code) that specifies the operation for that
instruction

– An address that specifies the registers and/or locations in memory to
use for that operation

• In the Basic Computer, since the memory contains 4096 (=
212) words, we needs 12 bit to specify which memory
address this instruction will use

• In the Basic Computer, bit 15 of the instruction specifies
the addressing mode (0: direct addressing, 1: indirect
addressing)

• Since the memory words, and hence the instructions, are
16 bits long, that leaves 3 bits for the instruction’s opcode

Opcode Address

Instruction Format

15 14 12 0

I

11

Addressing
mode

Basic Computer Organization & Design

57

Computer Organization Computer Architecture

ADDRESSING MODES

Instruction codes

• The address field of an instruction can represent either
– Direct address: the address in memory of the data to use (the address of the

operand), or

– Indirect address: the address in memory of the address in memory of the data
to use

• Effective Address (EA)
– The address, that can be directly used without modification to access an

operand for a computation-type instruction, or as the target address for a
branch-type instruction

0 ADD 45722

Operand457

1 ADD 30035

1350300

Operand1350

+

AC

+

AC

Direct addressing Indirect addressing

Basic Computer Organization & Design

58

Computer Organization Computer Architecture

PROCESSOR REGISTERS

Instruction codes

• A processor has many registers to hold instructions,

addresses, data, etc

• The processor has a register, the Program Counter (PC) that

holds the memory address of the next instruction to get

– Since the memory in the Basic Computer only has 4096 locations, the PC

only needs 12 bits

• In a direct or indirect addressing, the processor needs to keep

track of what locations in memory it is addressing: The

Address Register (AR) is used for this

– The AR is a 12 bit register in the Basic Computer

• When an operand is found, using either direct or indirect

addressing, it is placed in the Data Register (DR). The

processor then uses this value as data for its operation

• The Basic Computer has a single general purpose register –

the Accumulator (AC)

Basic Computer Organization & Design

59

Computer Organization Computer Architecture

PROCESSOR REGISTERS

Instruction codes

• The significance of a general purpose register is that it can be

referred to in instructions

– e.g. load AC with the contents of a specific memory location; store the

contents of AC into a specified memory location

• Often a processor will need a scratch register to store

intermediate results or other temporary data; in the Basic

Computer this is the Temporary Register (TR)

• The Basic Computer uses a very simple model of input/output

(I/O) operations

– Input devices are considered to send 8 bits of character data to the processor

– The processor can send 8 bits of character data to output devices

• The Input Register (INPR) holds an 8 bit character gotten from an

input device

• The Output Register (OUTR) holds an 8 bit character to be send

to an output device

Basic Computer Organization & Design

60

Computer Organization Computer Architecture

BASIC COMPUTER REGISTERS

List of BC Registers
DR 16 Data Register Holds memory operand

AR 12 Address Register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction Register Holds instruction code

PC 12 Program Counter Holds address of instruction

TR 16 Temporary Register Holds temporary data

INPR 8 Input Register Holds input character

OUTR 8 Output Register Holds output character

Registers

Registers in the Basic Computer

11 0

PC

15 0

IR

15 0

TR

7 0

OUTR

15 0

DR

15 0

AC

11 0

AR

INPR

0 7

Memory

4096 x 16

CPU

Basic Computer Organization & Design

61

Computer Organization Computer Architecture

COMMON BUS SYSTEM

Registers

• The registers in the Basic Computer are connected using a
bus

• This gives a savings in circuitry over complete
connections between registers

Basic Computer Organization & Design

62

Computer Organization Computer Architecture

COMMON BUS SYSTEM

Registers

S2
S1
S0

Bus

Memory unit
4096 x 16

LD INR CLR

Address

ReadWrite

AR

LD INR CLR

PC

LD INR CLR

DR

LD INR CLR

ACALU

E

INPR

IR

LD

LD INR CLR

TR

OUTR

LD
Clock

16-bit common bus

7

1

2

3

4

5

6

Basic Computer Organization & Design

63

Computer Organization Computer Architecture

COMMON BUS SYSTEM

Registers

AR

PC

DR

L I C

L I C

L I C

AC

L I C

ALUE

IR

L

TR

L I C

OUTR LD

INPR

Memory
4096 x 16

Address

Read

Write

16-bit Common Bus

7 1 2 3 4 5 6

S0 S1 S2

Basic Computer Organization & Design

64

Computer Organization Computer Architecture

COMMON BUS SYSTEM

Registers

• Three control lines, S2, S1, and S0 control which register the
bus selects as its input

• Either one of the registers will have its load signal
activated, or the memory will have its read signal activated

– Will determine where the data from the bus gets loaded

• The 12-bit registers, AR and PC, have 0’s loaded onto the
bus in the high order 4 bit positions

• When the 8-bit register OUTR is loaded from the bus, the
data comes from the low order 8 bits on the bus

0 0 0 x
0 0 1 AR
0 1 0 PC
0 1 1 DR
1 0 0 AC
1 0 1 IR
1 1 0 TR
1 1 1 Memory

S2 S1 S0 Register

Basic Computer Organization & Design

65

Computer Organization Computer Architecture

BASIC COMPUTER INSTRUCTIONS

Instructions

• Basic Computer Instruction Format

15 14 12 11 0

I Opcode Address

Memory-Reference Instructions (OP-code = 000 ~ 110)

Register-Reference Instructions (OP-code = 111, I = 0)

Input-Output Instructions (OP-code =111, I = 1)

15 12 11 0

Register operation0 1 1 1

15 12 11 0

I/O operation1 1 1 1

Basic Computer Organization & Design

66

Computer Organization Computer Architecture

BASIC COMPUTER INSTRUCTIONS
Hex Code

Symbol I = 0 I = 1 Description

AND 0xxx 8xxx AND memory word to AC
ADD 1xxx 9xxx Add memory word to AC
LDA 2xxx Axxx Load AC from memory
STA 3xxx Bxxx Store content of AC into memory
BUN 4xxx Cxxx Branch unconditionally
BSA 5xxx Dxxx Branch and save return address
ISZ 6xxx Exxx Increment and skip if zero

CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right AC and E
CIL 7040 Circulate left AC and E
INC 7020 Increment AC
SPA 7010 Skip next instr. if AC is positive
SNA 7008 Skip next instr. if AC is negative
SZA 7004 Skip next instr. if AC is zero
SZE 7002 Skip next instr. if E is zero
HLT 7001 Halt computer

INP F800 Input character to AC
OUT F400 Output character from AC
SKI F200 Skip on input flag
SKO F100 Skip on output flag
ION F080 Interrupt on
IOF F040 Interrupt off

InstructionsBasic Computer Organization & Design

67

Computer Organization Computer Architecture

INSTRUCTION SET COMPLETENESS

• Instruction Types

A computer should have a set of instructions so that the user can
construct machine language programs to evaluate any function
that is known to be computable.

Functional Instructions

- Arithmetic, logic, and shift instructions

- ADD, CMA, INC, CIR, CIL, AND, CLA

Transfer Instructions

- Data transfers between the main memory

and the processor registers

- LDA, STA

Control Instructions

- Program sequencing and control

- BUN, BSA, ISZ

Input/Output Instructions

- Input and output

- INP, OUT

InstructionsBasic Computer Organization & Design

68

Computer Organization Computer Architecture

CONTROL UNIT

Instruction codes

• Control unit (CU) of a processor translates from machine
instructions to the control signals for the microoperations
that implement them

• Control units are implemented in one of two ways

• Hardwired Control

– CU is made up of sequential and combinational circuits to generate the
control signals

• Microprogrammed Control

– A control memory on the processor contains microprograms that
activate the necessary control signals

• We will consider a hardwired implementation of the control
unit for the Basic Computer

Basic Computer Organization & Design

69

Computer Organization Computer Architecture

TIMING AND CONTROL

Control unit of Basic Computer

Timing and control

Instruction register (IR)

15 14 13 12 11 - 0

3 x 8
decoder

7 6 5 4 3 2 1 0

I

D 0

15 14 2 1 0

4 x 16
decoder

4-bit
sequence

counter
(SC)

Increment (INR)

Clear (CLR)

Clock

Other inputs

Control
signals

D

T

T

7

15

0

Combinational
Control

logic

Basic Computer Organization & Design

70

Computer Organization Computer Architecture

TIMING SIGNALS

Clock

T0 T1 T2 T3 T4 T0

T0

T1

T2

T3

T4

D3

CLR
SC

- Generated by 4-bit sequence counter and 416 decoder
- The SC can be incremented or cleared.

- Example: T0, T1, T2, T3, T4, T0, T1, . . .
Assume: At time T4, SC is cleared to 0 if decoder output D3 is active.

D3T4: SC 
0

Timing and controlBasic Computer Organization & Design

71

Computer Organization Computer Architecture

INSTRUCTION CYCLE

• In Basic Computer, a machine instruction is executed in the
following cycle:

1. Fetch an instruction from memory

2. Decode the instruction

3. Read the effective address from memory if the instruction has an
indirect address

4. Execute the instruction

• After an instruction is executed, the cycle starts again at
step 1, for the next instruction

• Note: Every different processor has its own (different)
instruction cycle

Basic Computer Organization & Design

72

Computer Organization Computer Architecture

FETCH and DECODE

• Fetch and Decode T0: AR PC (S0S1S2=010, T0=1)
T1: IR  M [AR], PC  PC + 1 (S0S1S2=111, T1=1)
T2: D0, . . . , D7  Decode IR(12-14), AR  IR(0-11), I  IR(15)

S2

S1

S0

Bus

7
Memory

unit
Address

Read

AR

LD

PC

INR

IR

LD
Clock

1

2

5

Common bus

T1

T0

Instruction CycleBasic Computer Organization & Design

73

Computer Organization Computer Architecture

DETERMINE THE TYPE OF INSTRUCTION

= 0 (direct)

D'7IT3: AR M[AR]
D'7I'T3: Nothing
D7I'T3: Execute a register-reference instr.
D7IT3: Execute an input-output instr.

Instrction Cycle

Start
SC  0

AR  PC
T0

IR  M[AR], PC  PC + 1

T1

AR  IR(0-11), I  IR(15)

Decode Opcode in IR(12-14),

T2

D7
= 0 (Memory-reference)(Register or I/O) = 1

II

Execute
register-reference

instruction

SC  0

Execute
input-output
instruction

SC  0

M[AR]AR Nothing

= 0 (register)(I/O) = 1 (indirect) = 1

T3 T3 T3 T3

Execute
memory-reference

instruction

SC  0

T4

Basic Computer Organization & Design

74

Computer Organization Computer Architecture

REGISTER REFERENCE INSTRUCTIONS

r = D7 IT3 => Register Reference Instruction
Bi = IR(i) , i=0,1,2,...,11

- D7 = 1, I = 0
- Register Ref. Instr. is specified in b0 ~ b11 of IR
- Execution starts with timing signal T3

Instruction Cycle

Register Reference Instructions are identified when

r: SC  0
CLA rB11: AC  0
CLE rB10: E  0
CMA rB9: AC  AC’
CME rB8: E  E’
CIR rB7: AC  shr AC, AC(15)  E, E  AC(0)
CIL rB6: AC  shl AC, AC(0)  E, E  AC(15)
INC rB5: AC  AC + 1
SPA rB4: if (AC(15) = 0) then (PC  PC+1)
SNA rB3: if (AC(15) = 1) then (PC  PC+1)
SZA rB2: if (AC = 0) then (PC  PC+1)
SZE rB1: if (E = 0) then (PC  PC+1)
HLT rB0: S  0 (S is a start-stop flip-flop)

Basic Computer Organization & Design

75

Computer Organization Computer Architecture

MEMORY REFERENCE INSTRUCTIONS

AND to AC

D0T4: DR  M[AR] Read operand

D0T5: AC  AC  DR, SC  0 AND with AC

ADD to AC

D1T4: DR  M[AR] Read operand

D1T5: AC  AC + DR, E  Cout, SC  0 Add to AC and store carry in E

- The effective address of the instruction is in AR and was placed there during
timing signal T2 when I = 0, or during timing signal T3 when I = 1

- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR instruction starts with T4

MR Instructions

Symbol
Operation
Decoder

Symbolic Description

AND D0 AC  AC  M[AR]
ADD D1 AC  AC + M[AR], E  Cout

LDA D2 AC  M[AR]
STA D3 M[AR]  AC
BUN D4 PC  AR
BSA D5 M[AR]  PC, PC  AR + 1
ISZ D6 M[AR]  M[AR] + 1, if M[AR] + 1 = 0 then PC  PC+1

Basic Computer Organization & Design

76

Computer Organization Computer Architecture

MEMORY REFERENCE INSTRUCTIONS

Memory, PC after execution

21

0 BSA 135

Next instruction

Subroutine

20

PC = 21

AR = 135

136

1 BUN 135

Memory, PC, AR at time T4

0 BSA 135

Next instruction

Subroutine

20

21

135

PC = 136

1 BUN 135

Memory Memory

LDA: Load to AC

D2T4: DR  M[AR]
D2T5: AC  DR, SC  0

STA: Store AC

D3T4: M[AR]  AC, SC  0
BUN: Branch Unconditionally

D4T4: PC  AR, SC  0
BSA: Branch and Save Return Address

M[AR]  PC, PC  AR + 1

Basic Computer Organization & Design

77

Computer Organization Computer Architecture

MEMORY REFERENCE INSTRUCTIONS

MR Instructions

BSA:

D5T4: M[AR]  PC, AR  AR + 1
D5T5: PC  AR, SC  0

ISZ: Increment and Skip-if-Zero

D6T4: DR  M[AR]
D6T5: DR  DR + 1
D6T4: M[AR]  DR, if (DR = 0) then (PC  PC + 1), SC  0

Basic Computer Organization & Design

78

Computer Organization Computer Architecture

FLOWCHART FOR MEMORY REFERENCE INSTRUCTIONS

MR Instructions

Memory-reference instruction

DR  M[AR] DR  M[AR] DR  M[AR]
M[AR]  AC

SC  0

AND ADD LDA STA

AC  AC DR

SC  0

AC  AC + DR

E  Cout

SC  0

AC  DR

SC  0

D T
0 4 D T1 4 D T2 4 D T3 4

D T0 5 D T1 5 D T2 5

PC  AR

SC  0

M[AR]  PC

AR  AR + 1

DR  M[AR]

BUN BSA ISZ

D T4 4 D T5 4 D T6 4

DR  DR + 1

D T5 5 D T6 5

PC  AR

SC  0

M[AR]  DR

If (DR = 0)

then (PC  PC + 1)

SC  0

D T6 6



Basic Computer Organization & Design

79

Computer Organization Computer Architecture

INPUT-OUTPUT AND INTERRUPT

• Input-Output Configuration

INPR Input register - 8 bits
OUTR Output register - 8 bits
FGI Input flag - 1 bit
FGO Output flag - 1 bit
IEN Interrupt enable - 1 bit

- The terminal sends and receives serial information
- The serial info. from the keyboard is shifted into INPR
- The serial info. for the printer is stored in the OUTR
- INPR and OUTR communicate with the terminal

serially and with the AC in parallel.
- The flags are needed to synchronize the timing

difference between I/O device and the computer

A Terminal with a keyboard and a Printer

I/O and Interrupt

Input-output
terminal

Serial
communication

interface

Computer
registers and
flip-flops

Printer

Keyboard

Receiver
interface

Transmitter
interface

FGOOUTR

AC

INPR FGI

Serial Communications Path

Parallel Communications Path

Basic Computer Organization & Design

80

Computer Organization Computer Architecture

PROGRAM CONTROLLED DATA TRANSFER

loop: If FGI = 1 goto loop

INPR  new data, FGI  1

loop: If FGO = 1 goto loop

consume OUTR, FGO  1

-- CPU -- -- I/O Device --

/* Input */ /* Initially FGI = 0 */
loop: If FGI = 0 goto loop

AC  INPR, FGI  0

/* Output */ /* Initially FGO = 1 */
loop: If FGO = 0 goto loop

OUTR  AC, FGO  0

I/O and Interrupt

Start Input

FGI  0

FGI=0

AC  INPR

More
Character

END

Start Output

FGO  0

FGO=0

More
Character

END

OUTR  AC

AC  Data

yes

no

yes

no

FGI=0 FGO=1

yes

yes
no

no

Basic Computer Organization & Design

81

Computer Organization Computer Architecture

INPUT-OUTPUT INSTRUCTIONS

D7IT3 = p
IR(i) = Bi, i = 6, …, 11

p: SC  0 Clear SC

INP pB11: AC(0-7)  INPR, FGI  0 Input char. to AC
OUT pB10: OUTR  AC(0-7), FGO  0 Output char. from AC
SKI pB9: if(FGI = 1) then (PC  PC + 1) Skip on input flag

SKO pB8: if(FGO = 1) then (PC  PC + 1) Skip on output flag
ION pB7: IEN  1 Interrupt enable on
IOF pB6: IEN  0 Interrupt enable off

Basic Computer Organization & Design

82

Computer Organization Computer Architecture

PROGRAM-CONTROLLED INPUT/OUTPUT

• Program-controlled I/O
- Continuous CPU involvement

I/O takes valuable CPU time

- CPU slowed down to I/O speed

- Simple

- Least hardware

I/O and Interrupt

Input

LOOP, SKI DEV
BUN LOOP
INP DEV

Output

LOOP, LDA DATA
LOP, SKO DEV

BUN LOP
OUT DEV

Basic Computer Organization & Design

83

Computer Organization Computer Architecture

INTERRUPT INITIATED INPUT/OUTPUT

- Open communication only when some data has to be passed --> interrupt.

- The I/O interface, instead of the CPU, monitors the I/O device.

- When the interface founds that the I/O device is ready for data transfer,

it generates an interrupt request to the CPU

- Upon detecting an interrupt, the CPU stops momentarily the task

it is doing, branches to the service routine to process the data

transfer, and then returns to the task it was performing.

* IEN (Interrupt-enable flip-flop)

- can be set and cleared by instructions

- when cleared, the computer cannot be interrupted

Basic Computer Organization & Design

84

Computer Organization Computer Architecture

FLOWCHART FOR INTERRUPT CYCLE
R = Interrupt f/f

- The interrupt cycle is a HW implementation of a branch
and save return address operation.

- At the beginning of the next instruction cycle, the
instruction that is read from memory is in address 1.

- At memory address 1, the programmer must store a branch instruction
that sends the control to an interrupt service routine

- The instruction that returns the control to the original
program is "indirect BUN 0"

I/O and Interrupt

Store return address

R
=1=0

in location 0
M[0]  PC

Branch to location 1
PC  1

IEN  0
R  0

Interrupt cycleInstruction cycle

Fetch and decode
instructions

IEN

FGI

FGO

Execute
instructions

R  1

=1

=1

=1

=0

=0

=0

Basic Computer Organization & Design

85

Computer Organization Computer Architecture

REGISTER TRANSFER OPERATIONS IN INTERRUPT CYCLE

Register Transfer Statements for Interrupt Cycle
- R F/F  1 if IEN (FGI + FGO)T0T1T2

 T0T1T2 (IEN)(FGI + FGO): R  1

- The fetch and decode phases of the instruction cycle
must be modified Replace T0, T1, T2 with R'T0, R'T1, R'T2

- The interrupt cycle :

RT0: AR  0, TR  PC

RT1: M[AR]  TR, PC  0

RT2: PC  PC + 1, IEN  0, R  0, SC  0

After interrupt cycle

0 BUN 1120

0

1

PC = 256
255

1 BUN 0

Before interrupt

Main
Program

1120

I/O

Program

0 BUN 1120

0

PC = 1

256
255

1 BUN 0

Memory

Main
Program

1120

I/O

Program

256

I/O and InterruptBasic Computer Organization & Design

86

Computer Organization Computer Architecture

FURTHER QUESTIONS ON INTERRUPT

How can the CPU recognize the device

requesting an interrupt ?

Since different devices are likely to require

different interrupt service routines, how can

the CPU obtain the starting address of the

appropriate routine in each case ?

Should any device be allowed to interrupt the

CPU while another interrupt is being serviced ?

How can the situation be handled when two or

more interrupt requests occur simultaneously ?

I/O and InterruptBasic Computer Organization & Design

87

Computer Organization Computer Architecture

COMPLETE COMPUTER DESCRIPTION
Flowchart of Operations

Description

=1 (I/O) =0 (Register) =1(Indir) =0(Dir)

start
SC  0, IEN  0, R  0

R

AR  PC
R’T0

IR  M[AR], PC  PC + 1

R’T1

AR  IR(0~11), I  IR(15)
D0...D7  Decode IR(12 ~ 14)

R’T2

AR  0, TR  PC

RT0

M[AR]  TR, PC  0

RT1

PC  PC + 1, IEN  0
R  0, SC  0

RT2

D7

I I

Execute
I/O

Instruction

Execute
RR

Instruction

AR <- M[AR] Idle

D7IT3 D7I’T3 D7’IT3 D7’I’T3

Execute MR
Instruction

=0(Instruction =1(Interrupt
Cycle) Cycle)

=1(Register or I/O) =0(Memory Ref)

D7’T4

Basic Computer Organization & Design

88

Computer Organization Computer Architecture

COMPLETE COMPUTER DESCRIPTION
Microoperations

Description

Fetch

Decode

Indirect
Interrupt

Memory-Reference
AND

ADD

LDA

STA
BUN
BSA

ISZ

RT0:
RT1:
RT2:

D7IT3:

RT0:
RT1:
RT2:

D0T4:
D0T5:
D1T4:
D1T5:
D2T4:
D2T5:
D3T4:
D4T4:
D5T4:
D5T5:
D6T4:
D6T5:
D6T6:

AR  PC
IR  M[AR], PC  PC + 1
D0, ..., D7  Decode IR(12 ~ 14),

AR  IR(0 ~ 11), I  IR(15)
AR  M[AR]

R  1
AR  0, TR  PC
M[AR]  TR, PC  0
PC  PC + 1, IEN  0, R  0, SC  0

DR  M[AR]
AC  AC  DR, SC  0
DR  M[AR]
AC  AC + DR, E  Cout, SC  0
DR  M[AR]
AC  DR, SC  0
M[AR]  AC, SC  0
PC  AR, SC  0
M[AR]  PC, AR  AR + 1
PC  AR, SC  0
DR  M[AR]
DR  DR + 1
M[AR]  DR, if(DR=0) then (PC  PC + 1),
SC  0

T0T1T2(IEN)(FGI + FGO):

Basic Computer Organization & Design

89

Computer Organization Computer Architecture

Register-Reference

CLA
CLE
CMA
CME
CIR
CIL
INC
SPA
SNA
SZA
SZE
HLT

Input-Output

INP
OUT
SKI
SKO
ION
IOF

D7IT3 = r
IR(i) = Bi

r:
rB11:
rB10:
rB9:
rB8:
rB7:
rB6:
rB5:
rB4:
rB3:
rB2:
rB1:
rB0:

D7IT3 = p
IR(i) = Bi

p:
pB11:
pB10:
pB9:
pB8:
pB7:
pB6:

(Common to all register-reference instr)
(i = 0,1,2, ..., 11)
SC  0
AC  0
E  0
AC  AC
E  E
AC  shr AC, AC(15)  E, E  AC(0)
AC  shl AC, AC(0)  E, E  AC(15)
AC  AC + 1
If(AC(15) =0) then (PC  PC + 1)
If(AC(15) =1) then (PC  PC + 1)
If(AC = 0) then (PC  PC + 1)
If(E=0) then (PC  PC + 1)
S  0

(Common to all input-output instructions)
(i = 6,7,8,9,10,11)
SC  0
AC(0-7)  INPR, FGI  0
OUTR  AC(0-7), FGO  0
If(FGI=1) then (PC  PC + 1)
If(FGO=1) then (PC  PC + 1)
IEN  1
IEN  0

Description

COMPLETE COMPUTER DESCRIPTION
Microoperations

Basic Computer Organization & Design

90

Computer Organization Computer Architecture

DESIGN OF BASIC COMPUTER(BC)

Hardware Components of BC

A memory unit: 4096 x 16.
Registers:

AR, PC, DR, AC, IR, TR, OUTR, INPR, and SC
Flip-Flops(Status):

I, S, E, R, IEN, FGI, and FGO
Decoders: a 3x8 Opcode decoder

a 4x16 timing decoder
Common bus: 16 bits
Control logic gates:
Adder and Logic circuit: Connected to AC

Control Logic Gates

- Input Controls of the nine registers

- Read and Write Controls of memory

- Set, Clear, or Complement Controls of the flip-flops

- S2, S1, S0 Controls to select a register for the bus

- AC, and Adder and Logic circuit

Design of Basic ComputerBasic Computer Organization & Design

91

Computer Organization Computer Architecture

CONTROL OF REGISTERS AND MEMORY

Scan all of the register transfer statements that change the content of AR:

LD(AR) = R'T0 + R'T2 + D'7IT3
CLR(AR) = RT0
INR(AR) = D5T4

Address Register; AR

R’T0: AR  PC LD(AR)
R’T2: AR  IR(0-11) LD(AR)
D’7IT3: AR  M[AR] LD(AR)
RT0: AR  0 CLR(AR)
D5T4: AR  AR + 1 INR(AR)

Design of Basic Computer

AR

LD

INR

CLR

Clock

To bus
12

From bus
12

D'

I

T
T

R

T

D

T

7

3
2

0

4

Basic Computer Organization & Design

92

Computer Organization Computer Architecture

CONTROL OF FLAGS

pB7: IEN  1 (I/O Instruction)
pB6: IEN  0 (I/O Instruction)
RT2: IEN  0 (Interrupt)

p = D7IT3 (Input/Output Instruction)

IEN: Interrupt Enable Flag

Design of Basic Computer

D

I

T3

7

J

K

Q IEN

p

B
7

B6

T
2

R

Basic Computer Organization & Design

93

Computer Organization Computer Architecture

CONTROL OF COMMON BUS

For AR D4T4: PC  AR
D5T5: PC  AR

x1 = D4T4 + D5T5

Design of Basic Computer

x1

x2

x3

x4

x5

x6

x7

Encoder

S
2

S
1

S
0

Multiplexer

bus select

inputs

x1 x2 x3 x4 x5 x6 x7 S2 S1 S0
selected
register

0 0 0 0 0 0 0 0 0 0 none
1 0 0 0 0 0 0 0 0 1 AR
0 1 0 0 0 0 0 0 1 0 PC
0 0 1 0 0 0 0 0 1 1 DR
0 0 0 1 0 0 0 1 0 0 AC
0 0 0 0 1 0 0 1 0 1 IR
0 0 0 0 0 1 0 1 1 0 TR
0 0 0 0 0 0 1 1 1 1 Memory

Basic Computer Organization & Design

94

Computer Organization Computer Architecture

DESIGN OF ACCUMULATOR LOGIC

Circuits associated with AC

All the statements that change the content of AC

Design of AC Logic

16

16

8

Adder and

logic

circuit

16
ACFrom DR

From INPR

Control

gates

LD INR CLR

16

To bus

Clock

D0T5: AC  AC  DR AND with DR
D1T5: AC  AC + DR Add with DR
D2T5: AC  DR Transfer from DR
pB11: AC(0-7)  INPR Transfer from INPR
rB9: AC  AC Complement
rB7 : AC  shr AC, AC(15)  E Shift right
rB6 : AC  shl AC, AC(0)  E Shift left
rB11 : AC  0 Clear
rB5 : AC  AC + 1 Increment

Basic Computer Organization & Design

95

Computer Organization Computer Architecture

CONTROL OF AC REGISTER

Gate structures for controlling
the LD, INR, and CLR of AC

AC

LD

INR
CLR

Clock

To bus
16From Adder

and Logic
16

AND

ADD

DR

INPR

COM

SHR

SHL

INC

CLR

D0

D1

D2

B11

B9

B7

B6

B5

B11

r

p

T 5

T 5

Design of AC LogicBasic Computer Organization & Design

96

Computer Organization Computer Architecture

ALU (ADDER AND LOGIC CIRCUIT)

One stage of Adder and Logic circuit

Design of AC Logic

AND

ADD

DR

INPR

COM

SHR

SHL

J

K

Q

AC(i)

LD

FA

C

C

From

INPR

bit(i)

DR(i)
AC(i)

AC(i+1)

AC(i-1)

i

i

i+1

I

Basic Computer Organization & Design

97

Computer Organization Computer Architecture

PROGRAMMING THE BASIC COMPUTER

Introduction

Machine Language

Assembly Language

Assembler

Program Loops

Programming Arithmetic and Logic Operations

Subroutines

Input-Output Programming

Programming the Basic Computer

98

Computer Organization Computer Architecture

INTRODUCTION

Symbol Hexa code Description

Those concerned with computer architecture should

have a knowledge of both hardware and software

because the two branches influence each other.

m: effective address
M: memory word (operand)

found at m

Introduction

AND 0 or 8 AND M to AC
ADD 1 or 9 Add M to AC, carry to E
LDA 2 or A Load AC from M
STA 3 or B Store AC in M
BUN 4 or C Branch unconditionally to m
BSA 5 or D Save return address in m and branch to m+1
ISZ 6 or E Increment M and skip if zero
CLA 7800 Clear AC
CLE 7400 Clear E
CMA 7200 Complement AC
CME 7100 Complement E
CIR 7080 Circulate right E and AC
CIL 7040 Circulate left E and AC
INC 7020 Increment AC, carry to E
SPA 7010 Skip if AC is positive
SNA 7008 Skip if AC is negative
SZA 7004 Skip if AC is zero
SZE 7002 Skip if E is zero
HLT 7001 Halt computer
INP F800 Input information and clear flag
OUT F400 Output information and clear flag
SKI F200 Skip if input flag is on
SKO F100 Skip if output flag is on
ION F080 Turn interrupt on
IOF F040 Turn interrupt off

Instruction Set of the Basic Computer

Programming the Basic Computer

99

Computer Organization Computer Architecture

MACHINE LANGUAGE

• Program

A list of instructions or statements for directing

the computer to perform a required data

processing task

• Various types of programming languages

- Hierarchy of programming languages

• Machine-language

- Binary code

- Octal or hexadecimal code

• Assembly-language (Assembler)

- Symbolic code

• High-level language (Compiler)

Machine Language Programming the Basic Computer

100

Computer Organization Computer Architecture

COMPARISON OF PROGRAMMING LANGUAGES

0 0010 0000 0000 0100
1 0001 0000 0000 0101

10 0011 0000 0000 0110
11 0111 0000 0000 0001

100 0000 0000 0101 0011
101 1111 1111 1110 1001
110 0000 0000 0000 0000

• Binary Program to Add Two Numbers

Location Instruction Code
000 2004
001 1005
002 3006
003 7001
004 0053
005 FFE9
006 0000

• Hexa program
Location Instruction

• Program with Symbolic OP-Code

000 LDA 004 Load 1st operand into AC
001 ADD 005 Add 2nd operand to AC
002 STA 006 Store sum in location 006
003 HLT Halt computer
004 0053 1st operand
005 FFE9 2nd operand (negative)
006 0000 Store sum here

Location Instruction Comments

• Assembly-Language Program

• Fortran Program

INTEGER A, B, C
DATA A,83 / B,-23
C = A + B
END

Machine Language

ORG 0 /Origin of program is location 0
LDA A /Load operand from location A
ADD B /Add operand from location B
STA C /Store sum in location C
HLT /Halt computer

A, DEC 83 /Decimal operand
B, DEC -23 /Decimal operand
C, DEC 0 /Sum stored in location C

END /End of symbolic program

Programming the Basic Computer

101

Computer Organization Computer Architecture

ASSEMBLY LANGUAGE
Syntax of the BC assembly language

Each line is arranged in three columns called fields

Label field

- May be empty or may specify a symbolic

address consists of up to 3 characters

- Terminated by a comma

Instruction field

- Specifies a machine or a pseudo instruction

- May specify one of

* Memory reference instr. (MRI)

MRI consists of two or three symbols separated by spaces.

ADD OPR (direct address MRI)

ADD PTR I (indirect address MRI)

* Register reference or input-output instr.

Non-MRI does not have an address part

* Pseudo instr. with or without an operand

Symbolic address used in the instruction field must be

defined somewhere as a label

Comment field

- May be empty or may include a comment

Assembly Language Programming the Basic Computer

102

Computer Organization Computer Architecture

PSEUDO-INSTRUCTIONS

ORG N

Hexadecimal number N is the memory loc.

for the instruction or operand listed in the following line

END

Denotes the end of symbolic program

DEC N

Signed decimal number N to be converted to the binary

HEX N

Hexadecimal number N to be converted to the binary

Example: Assembly language program to subtract two numbers

ORG 100
LDA SUB
CMA
INC
ADD MIN
STA DIF
HLT
DEC 83
DEC -23
HEX 0
END

/ Origin of program is location 100
/ Load subtrahend to AC
/ Complement AC
/ Increment AC
/ Add minuend to AC
/ Store difference
/ Halt computer
/ Minuend
/ Subtrahend
/ Difference stored here
/ End of symbolic program

MIN,
SUB,
DIF,

Assembly Language Programming the Basic Computer

103

Computer Organization Computer Architecture

TRANSLATION TO BINARY

ORG 100

LDA SUB

CMA

INC

ADD MIN

STA DIF

HLT

DEC 83

DEC -23

HEX 0

END

MIN,

SUB,

DIF,

100 2107

101 7200

102 7020

103 1106

104 3108

105 7001

106 0053

107 FFE9

108 0000

Symbolic ProgramLocation Content

Hexadecimal Code

Assembly Language Programming the Basic Computer

104

Computer Organization Computer Architecture

ASSEMBLER - FIRST PASS -
Assembler

Source Program - Symbolic Assembly Language Program

Object Program - Binary Machine Language Program
Two pass assembler

1st pass: generates a table that correlates all user defined

(address) symbols with their binary equivalent value

2nd pass: binary translation

First pass

Assembler

First pass

LC := 0

Scan next line of code Set LC

Label
no

yes

yes

no
ORG

Store symbol
in address-
symbol table
together with
value of LC

END

Increment LC

Go to
second
pass

no

yes

Programming the Basic Computer

105

Computer Organization Computer Architecture

ASSEMBLER - SECOND PASS -

Machine instructions are translated by means of table-lookup procedures;
(1. Pseudo-Instruction Table, 2. MRI Table, 3. Non-MRI Table

4. Address Symbol Table)

Assembler

Second pass

LC <- 0

Scan next line of code
Set LC

yes

yes

ORGPseudo
instr.

yes
END

no

Done

yes

MRI

no

Valid
non-MRI

instr.

no

Convert
operand
to binary
and store
in location
given by LC

no

DEC or
HEX

Error in
line of
code

Store binary
equivalent of
instruction
in location
given by LC

yes

no
Get operation code
and set bits 2-4

Search address-
symbol table for
binary equivalent
of symbol address
and set bits 5-16

I

Set
first

bit to 0

Set
first

bit to 1

yes no

Assemble all parts of
binary instruction and
store in location given by LC

Increment LC

Second Pass

Programming the Basic Computer

106

Computer Organization Computer Architecture

PROGRAM LOOPS

DIMENSION A(100)
INTEGER SUM, A
SUM = 0
DO 3 J = 1, 100

SUM = SUM + A(J)3

ORG 100
LDA ADS
STA PTR
LDA NBR
STA CTR
CLA
ADD PTR I
ISZ PTR
ISZ CTR
BUN LOP
STA SUM
HLT
HEX 150
HEX 0
DEC -100
HEX 0
HEX 0
ORG 150
DEC 75

DEC 23
END

/ Origin of program is HEX 100
/ Load first address of operand
/ Store in pointer
/ Load -100
/ Store in counter
/ Clear AC
/ Add an operand to AC
/ Increment pointer
/ Increment counter
/ Repeat loop again
/ Store sum
/ Halt
/ First address of operands
/ Reserved for a pointer
/ Initial value for a counter
/ Reserved for a counter
/ Sum is stored here
/ Origin of operands is HEX 150
/ First operand

/ Last operand
/ End of symbolic program

LOP,

ADS,
PTR,
NBR,
CTR,
SUM,

Program Loops

Loop: A sequence of instructions that are executed many times,
each with a different set of data

Fortran program to add 100 numbers:

.

.

.

Assembly-language program to add 100 numbers:

Programming the Basic Computer

107

Computer Organization Computer Architecture

PROGRAMMING ARITHMETIC AND LOGIC OPERATIONS

- Software Implementation
- Implementation of an operation with a program

using machine instruction set
- Usually when the operation is not included

in the instruction set

- Hardware Implementation
- Implementation of an operation in a computer

with one machine instruction

Software Implementation example:

* Multiplication
- For simplicity, unsigned positive numbers

- 8-bit numbers -> 16-bit product

Programming Arithmetic and Logic Operations

Implementation of Arithmetic and Logic Operations

Programming the Basic Computer

108

Computer Organization Computer Architecture

FLOWCHART OF A PROGRAM - Multiplication -

X holds the multiplicand
Y holds the multiplier
P holds the product

Example with four significant digits

0000 1111

0000 1011 0000 0000

0000 1111 0000 1111

0001 1110 0010 1101

0000 0000 0010 1101

0111 1000 1010 0101

1010 0101

Programming Arithmetic and Logic Operations

cil

CTR  - 8
P  0

E  0

AC  Y

Y  AC

cir EAC

E

P  P + X

E  0

AC  X

cil EAC

X  AC

CTR  CTR + 1

=1=0

CTR
=0

Stop
 0

X =

Y =

P

Programming the Basic Computer

109

Computer Organization Computer Architecture

ASSEMBLY LANGUAGE PROGRAM - Multiplication -

ORG 100
CLE
LDA Y
CIR

STA Y
SZE
BUN ONE
BUN ZRO
LDA X
ADD P
STA P
CLE
LDA X
CIL

STA X
ISZ CTR
BUN LOP
HLT
DEC -8
HEX 000F

HEX 000B
HEX 0
END

/ Clear E
/ Load multiplier
/ Transfer multiplier bit to E

/ Store shifted multiplier
/ Check if bit is zero
/ Bit is one; goto ONE
/ Bit is zero; goto ZRO
/ Load multiplicand
/ Add to partial product
/ Store partial product
/ Clear E
/ Load multiplicand
/ Shift left

/ Store shifted multiplicand
/ Increment counter
/ Counter not zero; repeat loop
/ Counter is zero; halt
/ This location serves as a counter
/ Multiplicand stored here

/ Multiplier stored here
/ Product formed here

LOP,

ONE,

ZRO,

CTR,
X,

Y,
P,

Programming Arithmetic and Logic OperationsProgramming the Basic Computer

110

Computer Organization Computer Architecture

ASSEMBLY LANGUAGE PROGRAM
- Double Precision Addition -

LDA AL
ADD BL
STA CL
CLA
CIL
ADD AH
ADD BH
STA CH
HLT

/ Load A low
/ Add B low, carry in E
/ Store in C low
/ Clear AC
/ Circulate to bring carry into AC(16)
/ Add A high and carry
/ Add B high
/ Store in C high

Programming Arithmetic and Logic OperationsProgramming the Basic Computer

111

Computer Organization Computer Architecture

ASSEMBLY LANGUAGE PROGRAM
- Logic and Shift Operations -

• Logic operations

- BC instructions : AND, CMA, CLA

- Program for OR operation

LDA A
CMA
STA TMP
LDA B
CMA
AND TMP
CMA

/ Load 1st operand
/ Complement to get A’
/ Store in a temporary location
/ Load 2nd operand B
/ Complement to get B’
/ AND with A’ to get A’ AND B’
/ Complement again to get A OR B

• Shift operations - BC has Circular Shift only

- Logical shift-right operation - Logical shift-left operation

CLE CLE

CIR CIL

- Arithmetic right-shift operation

CLE
SPA
CME
CIR

/ Clear E to 0
/ Skip if AC is positive
/ AC is negative
/ Circulate E and AC

Programming Arithmetic and Logic OperationsProgramming the Basic Computer

112

Computer Organization Computer Architecture

SUBROUTINES

- A set of common instructions that can be used in a program many times.

- Subroutine linkage : a procedure for branching

to a subroutine and returning to the main program

ORG 100
LDA X
BSA SH4
STA X
LDA Y
BSA SH4
STA Y
HLT
HEX 1234
HEX 4321

HEX 0
CIL
CIL
CIL
CIL
AND MSK
BUN SH4 I
HEX FFF0
END

/ Main program
/ Load X
/ Branch to subroutine
/ Store shifted number
/ Load Y
/ Branch to subroutine again
/ Store shifted number

/ Subroutine to shift left 4 times
/ Store return address here
/ Circulate left once

/ Circulate left fourth time
/ Set AC(13-16) to zero
/ Return to main program
/ Mask operand

X,
Y,

SH4,

MSK,

100
101
102
103
104
105
106
107
108

109
10A
10B
10C
10D
10E
10F
110

Loc.

Subroutines

Subroutine

Example

Programming the Basic Computer

113

Computer Organization Computer Architecture

SUBROUTINE PARAMETERS AND DATA LINKAGE

ORG 200

LDA X
BSA OR
HEX 3AF6
STA Y
HLT
HEX 7B95
HEX 0

HEX 0
CMA
STA TMP
LDA OR I
CMA
AND TMP
CMA
ISZ OR
BUN OR I

HEX 0
END

/ Load 1st operand into AC
/ Branch to subroutine OR
/ 2nd operand stored here
/ Subroutine returns here

/ 1st operand stored here
/ Result stored here

/ Subroutine OR
/ Complement 1st operand
/ Store in temporary location
/ Load 2nd operand
/ Complement 2nd operand
/ AND complemented 1st operand
/ Complement again to get OR
/ Increment return address
/ Return to main program
/ Temporary storage

X,
Y,

OR,

TMP,

200
201
202
203
204
205
206

207
208
209
20A
20B
20C
20D
20E
20F

210

Loc.

Example: Subroutine performing LOGICAL OR operation; Need two parameters

Subroutines

Linkage of Parameters and Data between the Main Program and a Subroutine
- via Registers
- via Memory locations
- ….

Programming the Basic Computer

114

Computer Organization Computer Architecture

SUBROUTINE - Moving a Block of Data -

BSA MVE
HEX 100
HEX 200
DEC -16
HLT
HEX 0
LDA MVE I
STA PT1
ISZ MVE
LDA MVE I
STA PT2
ISZ MVE
LDA MVE I
STA CTR
ISZ MVE
LDA PT1 I

STA PT2 I
ISZ PT1
ISZ PT2
ISZ CTR
BUN LOP
BUN MVE I
--
--
--

/ Main program

/ Branch to subroutine
/ 1st address of source data
/ 1st address of destination data
/ Number of items to move

/ Subroutine MVE
/ Bring address of source
/ Store in 1st pointer
/ Increment return address
/ Bring address of destination
/ Store in 2nd pointer
/ Increment return address
/ Bring number of items
/ Store in counter
/ Increment return address
/ Load source item

/ Store in destination
/ Increment source pointer
/ Increment destination pointer
/ Increment counter
/ Repeat 16 times
/ Return to main program

MVE,

LOP,

PT1,
PT2,
CTR,

• Fortran subroutine

SUBROUTINE MVE (SOURCE, DEST, N)
DIMENSION SOURCE(N), DEST(N)
DO 20 I = 1, N
DEST(I) = SOURCE(I)
RETURN
END

20

SubroutinesProgramming the Basic Computer

115

Computer Organization Computer Architecture

INPUT OUTPUT PROGRAM

Program to Input one Character(Byte)

SKI
BUN CIF
INP
OUT
STA CHR
HLT
--

/ Check input flag
/ Flag=0, branch to check again
/ Flag=1, input character
/ Display to ensure correctness
/ Store character

/ Store character here

CIF,

CHR,

LDA CHR
SKO
BUN COF
OUT
HLT
HEX 0057

/ Load character into AC
/ Check output flag
/ Flag=0, branch to check again
/ Flag=1, output character

/ Character is "W"

COF,

CHR,

Input Output Program

Program to Output a Character

Programming the Basic Computer

116

Computer Organization Computer Architecture

CHARACTER MANIPULATION

--
SKI
BUN FST
INP
OUT
BSA SH4
BSA SH4
SKI
BUN SCD
INP
OUT
BUN IN2 I

/ Subroutine entry

/ Input 1st character

/ Logical Shift left 4 bits
/ 4 more bits

/ Input 2nd character

/ Return

IN2,
FST,

SCD,

Subroutine to Input 2 Characters and pack into a word

Input Output ProgramProgramming the Basic Computer

117

Computer Organization Computer Architecture

PROGRAM INTERRUPT

Tasks of Interrupt Service Routine

- Save the Status of CPU
Contents of processor registers and Flags

- Identify the source of Interrupt
Check which flag is set

- Service the device whose flag is set
(Input Output Subroutine)

- Restore contents of processor registers and flags

- Turn the interrupt facility on

- Return to the running program
Load PC of the interrupted program

Input Output ProgramProgramming the Basic Computer

118

Computer Organization Computer Architecture

INTERRUPT SERVICE ROUTINE

-
BUN SRV
CLA
ION
LDA X
ADD Y
STA Z

STA SAC
CIR
STA SE
SKI
BUN NXT
INP
OUT
STA PT1 I
ISZ PT1
SKO
BUN EXT
LDA PT2 I
OUT
ISZ PT2
LDA SE
CIL
LDA SAC
ION
BUN ZRO I
-
-
-
-

/ Return address stored here
/ Branch to service routine
/ Portion of running program
/ Turn on interrupt facility

/ Interrupt occurs here
/ Program returns here after interrupt

/ Interrupt service routine
/ Store content of AC
/ Move E into AC(1)
/ Store content of E
/ Check input flag
/ Flag is off, check next flag
/ Flag is on, input character
/ Print character
/ Store it in input buffer
/ Increment input pointer
/ Check output flag
/ Flag is off, exit
/ Load character from output buffer
/ Output character
/ Increment output pointer
/ Restore value of AC(1)
/ Shift it to E
/ Restore content of AC
/ Turn interrupt on
/ Return to running program
/ AC is stored here
/ E is stored here
/ Pointer of input buffer
/ Pointer of output buffer

ZRO,

SRV,

NXT,

EXT,

SAC,
SE,
PT1,
PT2,

0
1

100
101
102
103
104

200

Loc.

Input Output ProgramProgramming the Basic Computer

119

Computer Organization Computer Architecture

MICROPROGRAMMED CONTROL

• Control Memory

• Sequencing Microinstructions

• Microprogram Example

• Design of Control Unit

• Microinstruction Format

• Nanostorage and Nanoprogram

Microprogrammed Control

120

Computer Organization Computer Architecture

COMPARISON OF CONTROL UNIT IMPLEMENTATIONS

Implementation of Control Unit

Control Unit Implementation

Combinational Logic Circuits (Hard-wired)

Microprogram

I R Status F/Fs

Control Data

Combinational
Logic Circuits

Control
Points

CPU

Memory

Timing State

Ins. Cycle State

Control Unit's State

Status F/Fs

Control Data

Next Address
Generation
Logic

C
S
A
R

Control
Storage

(-program
memory)

M
e
m
o
r
y

I R

C
S
D
R

C
P
s

CPUD

}

Microprogrammed Control

121

Computer Organization Computer Architecture

TERMINOLOGY

Microprogram
- Program stored in memory that generates all the control signals required

to execute the instruction set correctly
- Consists of microinstructions

Microinstruction
- Contains a control word and a sequencing word

Control Word - All the control information required for one clock cycle
Sequencing Word - Information needed to decide

the next microinstruction address
- Vocabulary to write a microprogram

Control Memory(Control Storage: CS)
- Storage in the microprogrammed control unit to store the microprogram

Writeable Control Memory(Writeable Control Storage:WCS)
- CS whose contents can be modified

-> Allows the microprogram can be changed
-> Instruction set can be changed or modified

Dynamic Microprogramming
- Computer system whose control unit is implemented with

a microprogram in WCS
- Microprogram can be changed by a systems programmer or a user

Microprogrammed Control

122

Computer Organization Computer Architecture

TERMINOLOGY

Sequencer (Microprogram Sequencer)

A Microprogram Control Unit that determines
the Microinstruction Address to be executed
in the next clock cycle

- In-line Sequencing
- Branch
- Conditional Branch
- Subroutine
- Loop
- Instruction OP-code mapping

Microprogrammed Control

123

Computer Organization Computer Architecture

MICROINSTRUCTION SEQUENCING

Sequencing Capabilities Required in a Control Storage

- Incrementing of the control address register
- Unconditional and conditional branches
- A mapping process from the bits of the machine

instruction to an address for control memory
- A facility for subroutine call and return

Sequencing

Instruction code

Mapping
logic

Multiplexers

Control memory (ROM)

Subroutine
register
(SBR)

Branch
logic

Status
bits

Microoperations

Control address register
(CAR)

Incrementer

MUX

select

select a status

bit

Branch address

Microprogrammed Control

124

Computer Organization Computer Architecture

CONDITIONAL BRANCH

Unconditional Branch
Fixing the value of one status bit at the input of the multiplexer to 1

Sequencing

Conditional Branch

If Condition is true, then Branch (address from
the next address field of the current microinstruction)
else Fall Through

Conditions to Test: O(overflow), N(negative),
Z(zero), C(carry), etc.

Control address register

Control memory
MUX

Load address

Increment

Status
(condition)

bits

Micro-operationsCondition select

Next address

...

Microprogrammed Control

125

Computer Organization Computer Architecture

MAPPING OF INSTRUCTIONS

Sequencing

ADD Routine
AND Routine

LDA Routine

STA Routine
BUN Routine

Control
Storage

0000

0001

0010

0011

0100

OP-codes of Instructions
ADD
AND
LDA
STA
BUN

0000
0001
0010
0011
0100

.

.

.

Direct Mapping

Address

10 0000 010

10 0001 010

10 0010 010

10 0011 010

10 0100 010

Mapping
Bits 10 xxxx 010

ADD Routine

Address

AND Routine

LDA Routine

STA Routine

BUN Routine

Microprogrammed Control

126

Computer Organization Computer Architecture

MAPPING OF INSTRUCTIONS TO MICROROUTINES

Mapping function implemented by ROM or PLA

OP-code

Mapping memory
(ROM or PLA)

Control address register

Control Memory

Mapping from the OP-code of an instruction to the
address of the Microinstruction which is the starting
microinstruction of its execution microprogram

1 0 1 1 Address
OP-code

Mapping bits

Microinstruction
address

0 x x x x 0 0

0 1 0 1 1 0 0

Machine
Instruction

SequencingMicroprogrammed Control

127

Computer Organization Computer Architecture

MICROPROGRAM EXAMPLE

Microprogram

Computer Configuration

MUX

AR

10 0

PC

10 0

Address Memory

2048 x 16

MUX

DR
15 0

Arithmetic
logic and
shift unit

AC

15 0

SBR

6 0

CAR

6 0

Control memory
128 x 20

Control unit

Microprogrammed Control

128

Computer Organization Computer Architecture

MACHINE INSTRUCTION FORMAT

Microinstruction Format

Microprogram

EA is the effective address
Symbol OP-code Description

ADD 0000 AC  AC + M[EA]

BRANCH 0001 if (AC < 0) then (PC  EA)

STORE 0010 M[EA]  AC

EXCHANGE 0011 AC  M[EA], M[EA]  AC

Machine instruction format

I Opcode

15 14 11 10

Address

0

Sample machine instructions

F1 F2 F3 CD BR AD

3 3 3 2 2 7

F1, F2, F3: Microoperation fields

CD: Condition for branching

BR: Branch field

AD: Address field

Microprogrammed Control

129

Computer Organization Computer Architecture

MICROINSTRUCTION FIELD DESCRIPTIONS - F1,F2,F3

F1 Microoperation Symbol

000 None NOP

001 AC  AC + DR ADD

010 AC  0 CLRAC

011 AC  AC + 1 INCAC

100 AC  DR DRTAC

101 AR  DR(0-10) DRTAR

110 AR  PC PCTAR

111 M[AR]  DR WRITE

Microprogram

F2 Microoperation Symbol

000 None NOP

001 AC  AC - DR SUB

010 AC  AC  DR OR

011 AC  AC  DR AND

100 DR  M[AR] READ

101 DR  AC ACTDR

110 DR  DR + 1 INCDR

111 DR(0-10)  PC PCTDR

F3 Microoperation Symbol

000 None NOP

001 AC  AC  DR XOR

010 AC  AC’ COM

011 AC  shl AC SHL

100 AC  shr AC SHR

101 PC  PC + 1 INCPC

110 PC  AR ARTPC

111 Reserved

Microprogrammed Control

130

Computer Organization Computer Architecture

MICROINSTRUCTION FIELD DESCRIPTIONS - CD, BR

CD Condition Symbol Comments

00 Always = 1 U Unconditional branch

01 DR(15) I Indirect address bit

10 AC(15) S Sign bit of AC

11 AC = 0 Z Zero value in AC

BR Symbol Function

00 JMP CAR  AD if condition = 1

CAR  CAR + 1 if condition = 0

01 CALL CAR  AD, SBR  CAR + 1 if condition = 1

CAR  CAR + 1 if condition = 0

10 RET CAR  SBR (Return from subroutine)

11 MAP CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Microprogram Microprogrammed Control

131

Computer Organization Computer Architecture

SYMBOLIC MICROINSTRUCTIONS

• Symbols are used in microinstructions as in assembly language

• A symbolic microprogram can be translated into its binary equivalent

by a microprogram assembler.

Sample Format
five fields: label; micro-ops; CD; BR; AD

Label: may be empty or may specify a symbolic
address terminated with a colon

Micro-ops: consists of one, two, or three symbols
separated by commas

CD: one of {U, I, S, Z}, where U: Unconditional Branch
I: Indirect address bit
S: Sign of AC
Z: Zero value in AC

BR: one of {JMP, CALL, RET, MAP}

AD: one of {Symbolic address, NEXT, empty}

Microprogram Microprogrammed Control

132

Computer Organization Computer Architecture

SYMBOLIC MICROPROGRAM - FETCH ROUTINE

AR  PC
DR  M[AR], PC  PC + 1
AR  DR(0-10), CAR(2-5)  DR(11-14), CAR(0,1,6)  0

Symbolic microprogram for the fetch cycle:

ORG 64
PCTAR U JMP NEXT
READ, INCPC U JMP NEXT
DRTAR U MAP

FETCH:

Binary equivalents translated by an assembler

1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 000 000 00 11 0000000

Binary
address F1 F2 F3 CD BR AD

Microprogram

During FETCH, Read an instruction from memory
and decode the instruction and update PC

Sequence of microoperations in the fetch cycle:

Microprogrammed Control

133

Computer Organization Computer Architecture

SYMBOLIC MICROPROGRAM

• Control Storage: 128 20-bit words

• The first 64 words: Routines for the 16 machine instructions

• The last 64 words: Used for other purpose (e.g., fetch routine and other subroutines)

• Mapping: OP-code XXXX into 0XXXX00, the first address for the 16 routines are

0(0 0000 00), 4(0 0001 00), 8, 12, 16, 20, ..., 60

Microprogram

ORG 0
NOP
READ
ADD

ORG 4
NOP
NOP
NOP
ARTPC

ORG 8
NOP
ACTDR
WRITE

ORG 12
NOP
READ
ACTDR, DRTAC
WRITE

ORG 64
PCTAR
READ, INCPC
DRTAR
READ
DRTAR

I
U
U

S
U
I
U

I
U
U

I
U
U
U

U
U
U
U
U

CALL
JMP
JMP

JMP
JMP
CALL
JMP

CALL
JMP
JMP

CALL
JMP
JMP
JMP

JMP
JMP
MAP
JMP
RET

INDRCT
NEXT
FETCH

OVER
FETCH
INDRCT
FETCH

INDRCT
NEXT
FETCH

INDRCT
NEXT
NEXT
FETCH

NEXT
NEXT

NEXT

ADD:

BRANCH:

OVER:

STORE:

EXCHANGE:

FETCH:

INDRCT:

Label Microops CD BR AD

Partial Symbolic Microprogram

Microprogrammed Control

134

Computer Organization Computer Architecture

This microprogram can be implemented using ROM

Microprogram

Address Binary Microinstruction

Micro Routine Decimal Binary F1 F2 F3 CD BR AD

ADD 0 0000000 000 000 000 01 01 1000011

1 0000001 000 100 000 00 00 0000010

2 0000010 001 000 000 00 00 1000000

3 0000011 000 000 000 00 00 1000000

BRANCH 4 0000100 000 000 000 10 00 0000110

5 0000101 000 000 000 00 00 1000000

6 0000110 000 000 000 01 01 1000011

7 0000111 000 000 110 00 00 1000000

STORE 8 0001000 000 000 000 01 01 1000011

9 0001001 000 101 000 00 00 0001010

10 0001010 111 000 000 00 00 1000000

11 0001011 000 000 000 00 00 1000000

EXCHANGE 12 0001100 000 000 000 01 01 1000011

13 0001101 001 000 000 00 00 0001110

14 0001110 100 101 000 00 00 0001111

15 0001111 111 000 000 00 00 1000000

FETCH 64 1000000 110 000 000 00 00 1000001

65 1000001 000 100 101 00 00 1000010

66 1000010 101 000 000 00 11 0000000

INDRCT 67 1000011 000 100 000 00 00 1000100

68 1000100 101 000 000 00 10 0000000

BINARY MICROPROGRAM

Microprogrammed Control

135

Computer Organization Computer Architecture

DESIGN OF CONTROL UNIT
- DECODING ALU CONTROL INFORMATION -

Design of Control Unit

microoperation fields

3 x 8 decoder

7 6 5 4 3 2 1 0

F1

3 x 8 decoder

7 6 5 4 3 2 1 0

F2

3 x 8 decoder

7 6 5 4 3 2 1 0

F3

Arithmetic
logic and
shift unit

AND
ADD

DRTAC

AC
Load

From
PC

From
DR(0-10)

Select 0 1

Multiplexers

AR
Load Clock

AC

DR

D
R

T
A

R

P
C

T
A

R

Decoding of Microoperation Fields

Microprogrammed Control

136

Computer Organization Computer Architecture

MICROPROGRAM SEQUENCER
- NEXT MICROINSTRUCTION ADDRESS LOGIC -

Design of Control Unit

Subroutine
CALL

MUX-1 selects an address from one of four sources and routes it into a CAR

- In-Line Sequencing  CAR + 1
- Branch, Subroutine Call  CS(AD)
- Return from Subroutine  Output of SBR
- New Machine instruction  MAP

3 2 1 0
S

S
1

0

MUX1

External
(MAP)

SBR
L

Incrementer

CARClock

Address
source
selection

In-Line

RETURN form Subroutine

Branch, CALL Address

Control Storage

S1S0 Address Source

00 CAR + 1, In-Line

01 SBR RETURN

10 CS(AD), Branch or CALL

11 MAP

Microprogrammed Control

137

Computer Organization Computer Architecture

MICROPROGRAM SEQUENCER
- CONDITION AND BRANCH CONTROL -

Design of Control Unit

Input
logicI0

I

1

T
MUX2

Select

1
I

S
Z

Test

CD Field of CS

From
CPU BR field

of CS

L(load SBR with PC)
for subroutine Call

S0

S1

for next address
selection

I1I0T Meaning Source of Address S1S0 L

000 In-Line CAR+1 00 0
001 JMP CS(AD) 01 0
010 In-Line CAR+1 00 0
011 CALL CS(AD) and SBR <- CAR+1 01 1
10x RET SBR 10 0
11x MAP DR(11-14) 11 0

L

S1 = I1
S0 = I1I0 + I1’T
L = I1’I0T

Input Logic

Microprogrammed Control

138

Computer Organization Computer Architecture

MICROPROGRAM SEQUENCER

Design of Control Unit

3 2 1 0

S1 MUX1

External
(MAP)

SBR
Load

Incrementer

CAR

Input
logic

I

0

T

MUX2

Select

1
I
S
Z

Test

Clock

Control memory

Microops CD BR AD

L

I

1 S0

.

Microprogrammed Control

139

Computer Organization Computer Architecture

MICROINSTRUCTION FORMAT

Microinstruction Format

Information in a Microinstruction
- Control Information
- Sequencing Information
- Constant

Information which is useful when feeding into the system

These information needs to be organized in some way for
- Efficient use of the microinstruction bits
- Fast decoding

Field Encoding

- Encoding the microinstruction bits
- Encoding slows down the execution speed

due to the decoding delay
- Encoding also reduces the flexibility due to

the decoding hardware

Microprogrammed Control

140

Computer Organization Computer Architecture

HORIZONTAL AND VERTICAL
MICROINSTRUCTION FORMAT

Horizontal Microinstructions
Each bit directly controls each micro-operation or each control point
Horizontal implies a long microinstruction word
Advantages: Can control a variety of components operating in parallel.

--> Advantage of efficient hardware utilization
Disadvantages: Control word bits are not fully utilized

--> CS becomes large --> Costly
Vertical Microinstructions

A microinstruction format that is not horizontal

Vertical implies a short microinstruction word
Encoded Microinstruction fields

--> Needs decoding circuits for one or two levels of decoding

Microinstruction Format

One-level decoding

Field A

2 bits

2 x 4
Decoder

3 x 8
Decoder

Field B

3 bits

1 of 4 1 of 8

Two-level decoding

Field A

2 bits

2 x 4
Decoder

6 x 64
Decoder

Field B

6 bits

Decoder and
selection logic

Microprogrammed Control

141

Computer Organization Computer Architecture

NANOSTORAGE AND NANOINSTRUCTION

The decoder circuits in a vertical microprogram
storage organization can be replaced by a ROM

=> Two levels of control storage
First level - Control Storage
Second level - Nano Storage

Two-level microprogram

First level
-Vertical format Microprogram

Second level
-Horizontal format Nanoprogram
- Interprets the microinstruction fields, thus converts a vertical

microinstruction format into a horizontal
nanoinstruction format.

Usually, the microprogram consists of a large number of short
microinstructions, while the nanoprogram contains fewer words
with longer nanoinstructions.

Control Storage Hierarchy Microprogrammed Control

142

Computer Organization Computer Architecture

TWO-LEVEL MICROPROGRAMMING - EXAMPLE
* Microprogram: 2048 microinstructions of 200 bits each
* With 1-Level Control Storage: 2048 x 200 = 409,600 bits
* Assumption:

256 distinct microinstructions among 2048
* With 2-Level Control Storage:

Nano Storage: 256 x 200 bits to store 256 distinct nanoinstructions
Control storage: 2048 x 8 bits

To address 256 nano storage locations 8 bits are needed
* Total 1-Level control storage: 409,600 bits

Total 2-Level control storage: 67,584 bits (256 x 200 + 2048 x 8)

Control Storage Hierarchy

Control address register

11 bits

Control memory
2048 x 8

Microinstruction (8 bits)
Nanomemory address

Nanomemory
256 x 200

Nanoinstructions (200 bits)

Microprogrammed Control

143

Computer Organization Computer Architecture

Overview

• Instruction Set Processor (ISP)

• Central Processing Unit (CPU)

• A typical computing task consists of a series of
steps specified by a sequence of machine
instructions that constitute a program.

• An instruction is executed by carrying out a
sequence of more rudimentary operations.

Central Processing Unit

144

Computer Organization Computer Architecture

Fundamental Concepts

• Processor fetches one instruction at a time and
perform the operation specified.

• Instructions are fetched from successive
memory locations until a branch or a jump
instruction is encountered.

• Processor keeps track of the address of the
memory location containing the next instruction
to be fetched using Program Counter (PC).

• Instruction Register (IR)

Central Processing Unit

145

Computer Organization Computer Architecture

Executing an Instruction

• Fetch the contents of the memory location
pointed to by the PC. The contents of this
location are loaded into the IR (fetch phase).

IR ← [[PC]]

• Assuming that the memory is byte addressable,
increment the contents of the PC by 4 (fetch
phase).

PC ← [PC] + 4

• Carry out the actions specified by the instruction
in the IR (execution phase).

Central Processing Unit

146

Computer Organization Computer Architecture

Processor Organizationlines
Data

Address
lines

bus
Memory

Carry -in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1- 

Instruction

decoder and

Internal processor

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Datapath

Textbook Page 413

MDR HAS
TWO INPUTS

AND TWO
OUTPUTS

Central Processing Unit

147

Computer Organization Computer Architecture

Executing an Instruction

• Transfer a word of data from one processor register
to another or to the ALU.

• Perform an arithmetic or a logic operation and store
the result in a processor register.

• Fetch the contents of a given memory location and
load them into a processor register.

• Store a word of data from a processor register into a
given memory location.

Central Processing Unit

148

Computer Organization Computer Architecture

Register Transfers

BA

Z

ALU

Yin

Y

Zin

Zout

Riin

Ri

Riout

bus
Internal processor

Constant 4

MUX

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Central Processing Unit

149

Computer Organization Computer Architecture

Register Transfers

• All operations and data transfers are controlled by the processor
clock.

Figure 7.3. Input and output gating for one register bit.

D Q

Q

Clock

1

0

Riout

Ri in

Bus

Figure 7.3. Input and output gating for one register bit.

Central Processing Unit

150

Computer Organization Computer Architecture

Performing an Arithmetic or Logic
Operation

• The ALU is a combinational circuit that has no
internal storage.

• ALU gets the two operands from MUX and bus.
The result is temporarily stored in register Z.

• What is the sequence of operations to add the
contents of register R1 to those of R2 and store
the result in R3?

1. R1out, Yin

2. R2out, SelectY, Add, Zin

3. Zout, R3in

Central Processing Unit

151

Computer Organization Computer Architecture

Fetching a Word from Memory

• Address into MAR; issue Read operation; data into MDR.

MDR

Memory -bus

Figure 7.4. Connection and control signals for register MDR.

data lines
Internal processor

busMDRoutMDRoutE

MDRinMDR inE

Figure 7.4. Connection and control signals for register MDR.

Central Processing Unit

152

Computer Organization Computer Architecture

Fetching a Word from Memory

• The response time of each memory access
varies (cache miss, memory-mapped I/O,…).

• To accommodate this, the processor waits until
it receives an indication that the requested
operation has been completed (Memory-
Function-Completed, MFC).

• Move (R1), R2
 MAR ← [R1]

 Start a Read operation on the memory bus

 Wait for the MFC response from the memory

 Load MDR from the memory bus

 R2 ← [MDR]

Central Processing Unit

153

Computer Organization Computer Architecture

Timing
Figure 7.5. Timing of a memory Read operation.

1 2

Clock

Address

MR

Data

MFC

Read

MDRinE

MDRout

Step 3

MAR in

Assume MAR
is always available
on the address lines
of the memory bus.

R2 ← [MDR]

MAR ← [R1]

Start a Read operation on the memory bus

Wait for the MFC response from the memory

Load MDR from the memory bus

Central Processing Unit

154

Computer Organization Computer Architecture

Execution of a Complete
Instruction

• Add (R3), R1

• Fetch the instruction

• Fetch the first operand (the contents of the memory
location pointed to by R3)

• Perform the addition

• Load the result into R1

Central Processing Unit

155

Computer Organization Computer Architecture

Architecture

BA

Z

ALU

Yin

Y

Zin

Zout

Riin

Ri

Riout

bus
Internal processor

Constant 4

MUX

Figure 7.2. Input and output gating for the registers in Figure 7.1.

Select

Central Processing Unit

156

Computer Organization Computer Architecture

Execution of a Complete
Instruction

Step Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDRout , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor executionof the instruction Add (R3),R1.

lines
Data

Address
lines

bus
Memory

Carry -in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1- 

Instruction

decoder and

Internal processor

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Add (R3), R1

Central Processing Unit

157

Computer Organization Computer Architecture

Execution of Branch Instructions

• A branch instruction replaces the contents of PC
with the branch target address, which is usually
obtained by adding an offset X given in the branch
instruction.

• The offset X is usually the difference between the
branch target address and the address immediately
following the branch instruction.

• Conditional branch

Central Processing Unit

158

Computer Organization Computer Architecture

Execution of Branch Instructions

Step Action

1 PCout, MAR in , Read,Select4,Add, Z in

2 Zout, PCin , Yin, WMF C

3 MDRout , IR in

4 Offset-field-of-IRout, Add, Z in

5 Zout, PCin, End

Figure 7.7. Control sequence for an unconditional branch instruction.

Central Processing Unit

159

Computer Organization Computer Architecture

Multiple-Bus Organization
Memory bus

data lines

Figure 7.8. Three-bus organization of the datapath.

Bus A Bus B Bus C

Instruction
decoder

PC

Register

f ile

Constant 4

ALU

MDR

A

B

R

M
U

X

Incrementer

Address
lines

MAR

IR

Central Processing Unit

160

Computer Organization Computer Architecture

Multiple-Bus Organization

• Add R4, R5, R6

Step Action

1 PC

out
, R=B, MAR

in
, Read, IncPC

2 WMF C

3 MDR

outB
, R=B, IR

in

4 R4
outA

, R5
outB

, SelectA, Add, R6
in

, End

Figure 7.9. Control sequence for the instruction. Add R4,R5,R6,
for the three-bus organization in Figure 7.8.

Central Processing Unit

161

Computer Organization Computer Architecture

Quiz

• What is the control
sequence for execution
of the instruction

Add R1, R2

including the instruction
fetch phase? (Assume
single bus architecture)

lines
Data

Address
lines

bus
Memory

Carry -in

ALU

PC

MAR

MDR

Y

Z

Add

XOR

Sub

bus

IR

TEMP

R0

control
ALU

lines

Control signals

R n 1- 

Instruction

decoder and

Internal processor

control logic

A B

Figure 7.1. Single-bus organization of the datapath inside a processor.

MUXSelect

Constant 4

Central Processing Unit

162

Computer Organization Computer Architecture

Control Unit Organization

Figure 7.10. Control unit organization.

CLK
Clock

Control step

IR
encoder

Decoder/

Control signals

codes

counter

inputs

Condition

External

Central Processing Unit

163

Computer Organization Computer Architecture

Detailed Block DescriptionExternal
inputs

Figure 7.11. Separation of the decoding and encoding functions.

Encoder

Reset
CLK

Clock

Control signals

counter

Run End

Condition
codes

decoder

Instruction

Step decoder

Control step

IR

T1 T2 Tn

INS1

INS2

INSm

Central Processing Unit

164

Computer Organization Computer Architecture

Generating Zin

• Zin = T1 + T6 • ADD + T4 • BR + …

Figure 7.12. Generation of the Zin control signal for the processor in Figure 7.1.

T
1

AddBranch

T
4

T
6

Central Processing Unit

165

Computer Organization Computer Architecture

Generating End

• End = T7 • ADD + T5 • BR + (T5 • N + T4 • N) • BRN +…

Figure 7.13.Generation of the End control signal.

T7

Add Branch
Branch<0

T5

End

NN

T4T5

Central Processing Unit

166

Computer Organization Computer Architecture

A Complete Processor
Instruction

unit
Integer

unit

Floating-point

unit

Instruction
cache

Data
cache

Bus interface

Main
memory

Input/
Output

Sy stem bus

Processor

Figure 7.14. Block diagram of a complete processor.

Central Processing Unit

167

Computer Organization Computer Architecture

Overview

• Control signals are generated by a program similar to machine
language programs.

• Control Word (CW); microroutine; microinstruction

P
C

in

P
C

o
u

t

M
A

R
in

R
e
a
d

M
D

R
o

u
t

IR
in

Y
in

S
e
le

c
t

A
d
d

Z
in

Z
o

u
t

R
1 o

u
t

R
1 i

n

R
3 o

u
t

W
M

F
C

E
n
d

0

1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

1

0

0

0

0

0

0

1

0

0

0

0

1

0

1

0

0

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

1

0

0

1

0

0

Micro -
instruction

1

2

3

4

5

6

7

Figure 7.15 An example of microinstructions for Figure 7.6.

Microprogrammed Control

168

Computer Organization Computer Architecture

OverviewStep Action

1 PCout , MAR in , Read,Select4,Add, Zin

2 Zout , PCin , Yin , WMF C

3 MDRout , IR in

4 R3out , MAR in , Read

5 R1out , Yin , WMF C

6 MDRout , SelectY,Add, Zin

7 Zout , R1in , End

Figure 7.6. Control sequencefor executionof the instruction Add (R3),R1.

Microprogrammed Control

169

Computer Organization Computer Architecture

Overview

• Control store

Figure 7.16. Basic organization of a microprogrammed control unit.

store
Control

generator

Starting
address

CW

Clock PC

IR

One function
cannot be carried
out by this simple
organization.

Microprogrammed Control

170

Computer Organization Computer Architecture

Overview

• The previous organization cannot handle the situation when the
control unit is required to check the status of the condition codes
or external inputs to choose between alternative courses of action.

• Use conditional branch microinstruction.

AddressMicroinstruction

0 PCout , MARin , Read,Select4,Add, Zin

1 Zout , PCin , Yin , WMFC

2 MDRout , IRin

3 Branchto startingaddressof appropriatemicroroutine

. .

25 If N=0, thenbranchto microinstruction0

26 Offset-field-of-IRout , SelectY,Add, Zin

27 Zout , PCin , End

Figure 7.17. Microroutine for the instruction Branch<0.

Microprogrammed Control

171

Computer Organization Computer Architecture

Overview

Figure 7.18. Organization of the control unit to allow
conditional branching in the microprogram.

Control
store

Clock

generator

Starting and
branch address Condition

codes

inputs
External

CW

IR

PC

Microprogrammed Control

172

Computer Organization Computer Architecture

Microinstructions

• A straightforward way to structure microinstructions
is to assign one bit position to each control signal.

• However, this is very inefficient.

• The length can be reduced: most signals are not
needed simultaneously, and many signals are
mutually exclusive.

• All mutually exclusive signals are placed in the same
group in binary coding.

Microprogrammed Control

173

Computer Organization Computer Architecture

Partial Format for the
Microinstructions

F2 (3 bits)

000: No transf er

001: PCin
010: IRin

011: Zin

100: R0in
101: R1in
110: R2in

111: R3in

F1 F2 F3 F4 F5

F1 (4 bits) F3 (3 bits) F4 (4 bits) F5 (2 bits)

0000: No transf er

0001: PCout

0010: MDRout

0011: Zout

0100: R0out

0101: R1out

0110: R2out

0111: R3out

1010: TEMPout

1011: Of f setout

000: No transf er

001: MARin

010: MDRin

011: TEMPin

100: Yin

0000: Add

0001: Sub

1111: XOR

16 ALU
f unctions

00: No action

01: Read

10: Write

F6 F7 F8

F6 (1 bit) F7 (1 bit) F8 (1 bit)

0: SelectY

1: Select4

0: No action

1: WMFC

0: Continue

1: End

Figure 7.19. An example of a partial format for field-encoded microinstructions.

Microinstruction

What is the price paid for
this scheme?

Microprogrammed Control

174

Computer Organization Computer Architecture

Further Improvement

• Enumerate the patterns of required signals in all
possible microinstructions. Each meaningful
combination of active control signals can then be
assigned a distinct code.

• Vertical organization

• Horizontal organization

Microprogrammed Control

175

Computer Organization Computer Architecture

Microprogram Sequencing

• If all microprograms require only straightforward
sequential execution of microinstructions except
for branches, letting a μPC governs the
sequencing would be efficient.

• However, two disadvantages:
 Having a separate microroutine for each machine instruction

results in a large total number of microinstructions and a large
control store.

 Longer execution time because it takes more time to carry out
the required branches.

• Example: Add src, Rdst

• Four addressing modes: register, autoincrement,
autodecrement, and indexed (with indirect
forms).

Microprogrammed Control

176

Computer Organization Computer Architecture

- Bit-ORing
- Wide-Branch Addressing
- WMFC

Microprogrammed Control

177

Computer Organization Computer Architecture

OP code 0 1 0 Rsrc Rdst

Mode

Contents of IR

034781011

Figure 7.21.Microinstruction for Add (Rsrc)+,Rdst.

Note:Microinstruction at location 170 is not executed for this addressing mode.

Address Microinstruction
(octal)

000 PCout, MARin, Read, Select4, Add, Zin

001 Zout, PCin, Yin, WMFC

002 MDRout, IRin

003 Branch {PC 101 (from Instruction decoder);

PC5,4
 [IR10,9]; PC3



121 Rsrcout, MARin, Read, Select4, Add, Zin

122 Zout, Rsrcin

123

170 MDRout, MARin, Read, WMFC

171 MDRout, Yin

172 Rdstout, SelectY, Add, Zin

173 Zout, Rdstin, End

[IR10]×[IR9]×[IR8]}

Branch {PC 170;PC0 [IR8]}, WMFC

Microprogrammed Control

178

Computer Organization Computer Architecture

Microinstructions with Next-
Address Field

• The microprogram we discussed requires
several branch microinstructions, which perform
no useful operation in the datapath.

• A powerful alternative approach is to include an
address field as a part of every microinstruction
to indicate the location of the next
microinstruction to be fetched.

• Pros: separate branch microinstructions are
virtually eliminated; few limitations in assigning
addresses to microinstructions.

• Cons: additional bits for the address field
(around 1/6)

Microprogrammed Control

179

Computer Organization Computer Architecture

Microinstructions with Next-
Address FieldFigure 7.22. Microinstruction-sequencing organization.

Condition
codes

IR

Decoding circuits

Control store

Next address

Microinstruction decoder

Control signals

Inputs
External

AR

 I R

Microprogrammed Control

180

Computer Organization Computer Architecture

F1 (3 bits)

000: No transf er

001: PCout

010: MDRout

011: Zout

100: Rsrcout

101: Rdstout

110: TEMPout

F0 F1 F2 F3

F0 (8 bits) F2 (3 bits) F3 (3 bits)

000: No transf er

001: PCin
010: IRin

011: Zin
100: Rsrcin

000: No transf er

001: MARin

F4 F5 F6 F7

F5 (2 bits)F4 (4 bits) F6 (1 bit)

0000: Add

0001: Sub

0: SelectY

1: Select4

00: No action

01: Read

Microinstruction

Address of next

microinstruction

101: Rdstin

010: MDRin

011: TEMPin

100: Yin

1111: XOR

10: Write

F8 F9 F10

F8 (1 bit)

F7 (1 bit)

F9 (1 bit) F10 (1 bit)

0: No action

1: WMFC

0: No action

1: ORindsrc

0: No action

1: ORmode

0: NextAdrs

1: InstDec

Figure 7.23.Format for microinstructions in the example of Section 7.5.3.

Microprogrammed Control

181

Computer Organization Computer Architecture

Implementation of the Microroutine
(See Figure 7.23 for encoded signals.)

Figure 7.24. Implementation of the microroutine of Figure 7.21 using a

1

0

1

11110

0111110

001

001

1

21 0

00

0

00

0

0

0

0

0

0

0

0

0

0

0 0

0

0

00

0 0

0101

110

37

7

00000000

0 1111

110

0

0

0

17

07

F9

0

0

0

0

0

0

F10

0

0

0

0

0

0

00

0

0

0

0

0

0

F8F7F6F5F4

000 0 0 0 0 0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0 1

1

0

0

0 0

1

0

0

0

10000

0000

1100000

10

0

0

0

0

0

0

1

0 0

0

0

0

0

0

00 01

000

000

001

110

100

10

F2

1

110 0 0 0 0 0

1

1

221

0

11110

111 00

1

1

2

0

21

0

00

address

Octal

111 00000

1 0000000

10000000

F0 F1

0

0 0 10 0

010

010

0 11

001

110

100

0

0

0

1

1

0

1

F3

 next-microinstruction address field.

011000 0 0 0 0 00 00 00000 0 0 0 0 030 0 00 0 0

Microprogrammed Control

182

Computer Organization Computer Architecture

decoder

Microinstruction

Control store

Next address F1 F2

Other control signals

F10F9F8

Decoder

Decoder

circuits
Decoding

Condition

External

codes

inputs

Rsrc RdstIR

Rdstout

Rdstin

Rsrcout

Rsrcin

AR

InstDecout

ORmode

ORindsrc

R15in R15out R0in R0out

Figure 7.25. Some details of the control-signal-generating circuitry.

Microprogrammed Control

183

Computer Organization Computer Architecture

bit-ORing
Microprogrammed Control

184

Computer Organization Computer Architecture

PIPELINING AND VECTOR PROCESSING

• Parallel Processing

• Pipelining

• Arithmetic Pipeline

• Instruction Pipeline

• RISC Pipeline

• Vector Processing

• Array Processors

Pipelining and Vector Processing

185

Computer Organization Computer Architecture

PARALLEL PROCESSING

Levels of Parallel Processing

- Job or Program level

- Task or Procedure level

- Inter-Instruction level

- Intra-Instruction level

Execution of Concurrent Events in the computing

process to achieve faster Computational Speed

Parallel ProcessingPipelining and Vector Processing

186

Computer Organization Computer Architecture

PARALLEL COMPUTERS

Architectural Classification

Number of Data Streams

Number of

Instruction

Streams

Single

Multiple

Single Multiple

SISD SIMD

MISD MIMD

Parallel Processing

– Flynn's classification

» Based on the multiplicity of Instruction Streams and
Data Streams

» Instruction Stream

• Sequence of Instructions read from memory

» Data Stream

• Operations performed on the data in the processor

Pipelining and Vector Processing

187

Computer Organization Computer Architecture

COMPUTER ARCHITECTURES FOR PARALLEL
PROCESSING

Von-Neuman
based

Dataflow

Reduction

SISD

MISD

SIMD

MIMD

Superscalar processors

Superpipelined processors

VLIW

Nonexistence

Array processors

Systolic arrays

Associative processors

Shared-memory multiprocessors

Bus based
Crossbar switch based
Multistage IN based

Message-passing multicomputers

Hypercube
Mesh
Reconfigurable

Parallel ProcessingPipelining and Vector Processing

188

Computer Organization Computer Architecture

SISD COMPUTER SYSTEMS

Control
Unit

Processor
Unit

Memory

Instruction stream

Data stream

Characteristics

- Standard von Neumann machine
- Instructions and data are stored in memory
- One operation at a time

Limitations

Von Neumann bottleneck

Maximum speed of the system is limited by the
Memory Bandwidth (bits/sec or bytes/sec)

- Limitation on Memory Bandwidth
- Memory is shared by CPU and I/O

Parallel ProcessingPipelining and Vector Processing

189

Computer Organization Computer Architecture

SISD PERFORMANCE IMPROVEMENTS

• Multiprogramming

• Spooling

• Multifunction processor

• Pipelining

• Exploiting instruction-level parallelism

- Superscalar
- Superpipelining
- VLIW (Very Long Instruction Word)

Parallel ProcessingPipelining and Vector Processing

190

Computer Organization Computer Architecture

MISD COMPUTER SYSTEMS

M CU P

M CU P

M CU P

•

•

•

•

•

•

Memory

Instruction stream

Data stream

Characteristics

- There is no computer at present that can be
classified as MISD

Parallel ProcessingPipelining and Vector Processing

191

Computer Organization Computer Architecture

SIMD COMPUTER SYSTEMS

Control Unit

Memory

Alignment network

P P P• • •

M MM • • •

Data bus

Instruction stream

Data stream

Processor units

Memory modules

Characteristics

- Only one copy of the program exists
- A single controller executes one instruction at a time

Parallel ProcessingPipelining and Vector Processing

192

Computer Organization Computer Architecture

TYPES OF SIMD COMPUTERS

Array Processors

- The control unit broadcasts instructions to all PEs,
and all active PEs execute the same instructions

- ILLIAC IV, GF-11, Connection Machine, DAP, MPP

Systolic Arrays

- Regular arrangement of a large number of
very simple processors constructed on
VLSI circuits

- CMU Warp, Purdue CHiP

Associative Processors

- Content addressing
- Data transformation operations over many sets

of arguments with a single instruction
- STARAN, PEPE

Parallel ProcessingPipelining and Vector Processing

193

Computer Organization Computer Architecture

MIMD COMPUTER SYSTEMS

Interconnection Network

P M P MP M • • •

Shared Memory

Characteristics

- Multiple processing units

- Execution of multiple instructions on multiple data

Types of MIMD computer systems

- Shared memory multiprocessors

- Message-passing multicomputers

Parallel ProcessingPipelining and Vector Processing

194

Computer Organization Computer Architecture

SHARED MEMORY MULTIPROCESSORS

Characteristics
All processors have equally direct access to

one large memory address space

Example systems
Bus and cache-based systems

- Sequent Balance, Encore Multimax
Multistage IN-based systems

- Ultracomputer, Butterfly, RP3, HEP
Crossbar switch-based systems

- C.mmp, Alliant FX/8

Limitations
Memory access latency
Hot spot problem

Interconnection Network(IN)

• • •

• • •P PP

M MM

Buses,
Multistage IN,
Crossbar Switch

Parallel ProcessingPipelining and Vector Processing

195

Computer Organization Computer Architecture

MESSAGE-PASSING MULTICOMPUTER

Characteristics

- Interconnected computers
- Each processor has its own memory, and
communicate via message-passing

Example systems

- Tree structure: Teradata, DADO
- Mesh-connected: Rediflow, Series 2010, J-Machine
- Hypercube: Cosmic Cube, iPSC, NCUBE, FPS T Series, Mark III

Limitations

- Communication overhead
- Hard to programming

Message-Passing Network

• • •P PP

M M M• • •

Point-to-point connections

Parallel ProcessingPipelining and Vector Processing

196

Computer Organization Computer Architecture

PIPELINING

R1  Ai, R2  Bi Load Ai and Bi

R3  R1 * R2, R4  Ci Multiply and load Ci

R5  R3 + R4 Add

A technique of decomposing a sequential process
into suboperations, with each subprocess being
executed in a partial dedicated segment that
operates concurrently with all other segments.

Ai * Bi + Ci for i = 1, 2, 3, ... , 7

Ai

R1 R2

Multiplier

R3 R4

Adder

R5

Memory

Pipelining

Bi Ci

Segment 1

Segment 2

Segment 3

Pipelining and Vector Processing

197

Computer Organization Computer Architecture

OPERATIONS IN EACH PIPELINE STAGE

Clock
Pulse Segment 1 Segment 2 Segment 3

Number R1 R2 R3 R4 R5
1 A1 B1
2 A2 B2 A1 * B1 C1
3 A3 B3 A2 * B2 C2 A1 * B1 + C1
4 A4 B4 A3 * B3 C3 A2 * B2 + C2
5 A5 B5 A4 * B4 C4 A3 * B3 + C3
6 A6 B6 A5 * B5 C5 A4 * B4 + C4
7 A7 B7 A6 * B6 C6 A5 * B5 + C5
8 A7 * B7 C7 A6 * B6 + C6
9 A7 * B7 + C7

PipeliningPipelining and Vector Processing

198

Computer Organization Computer Architecture

GENERAL PIPELINE

General Structure of a 4-Segment Pipeline

S R1 1 S R2 2 S R3 3 S R4 4
Input

Clock

Space-Time Diagram

1 2 3 4 5 6 7 8 9

T1

T1

T1

T1

T2

T2

T2

T2

T3

T3

T3

T3 T4

T4

T4

T4 T5

T5

T5

T5 T6

T6

T6

T6

Clock cycles

Segment 1

2

3

4

PipeliningPipelining and Vector Processing

199

Computer Organization Computer Architecture

PIPELINE SPEEDUP

n: Number of tasks to be performed

Conventional Machine (Non-Pipelined)

tn: Clock cycle

t1: Time required to complete the n tasks

t1 = n * tn

Pipelined Machine (k stages)

tp: Clock cycle (time to complete each suboperation)

tk: Time required to complete the n tasks

tk = (k + n - 1) * tp

Speedup

Sk: Speedup

Sk = n*tn / (k + n - 1)*tp

n  
Sk =

tn

tp

(= k, if tn = k * tp)lim

PipeliningPipelining and Vector Processing

200

Computer Organization Computer Architecture

PIPELINE AND MULTIPLE FUNCTION UNITS

P1

I i

P2

I i+1

P3

I i+2

P4

I i+3

Multiple Functional Units

Example
- 4-stage pipeline
- subopertion in each stage; tp = 20nS
- 100 tasks to be executed
- 1 task in non-pipelined system; 20*4 = 80nS

Pipelined System
(k + n - 1)*tp = (4 + 99) * 20 = 2060nS

Non-Pipelined System
n*k*tp = 100 * 80 = 8000nS

Speedup
Sk = 8000 / 2060 = 3.88

4-Stage Pipeline is basically identical to the system
with 4 identical function units

PipeliningPipelining and Vector Processing

201

Computer Organization Computer Architecture

ARITHMETIC PIPELINE

Floating-point adder

[1] Compare the exponents
[2] Align the mantissa
[3] Add/sub the mantissa
[4] Normalize the result

X = A x 2a

Y = B x 2b

R

Compare
exponents

by subtraction

a b

R

Choose exponent

Exponents

R

A B

Align mantissa

Mantissas

Difference

R

Add or subtract
mantissas

R

Normalize
result

R

R

Adjust
exponent

R

Segment 1:

Segment 2:

Segment 3:

Segment 4:

Arithmetic PipelinePipelining and Vector Processing

202

Computer Organization Computer Architecture

4-STAGE FLOATING POINT ADDER

A = a x 2p B = b x 2q

p a q b

Exponent
subtractor

Fraction
selector

Fraction with min(p,q)

Right shifter

Other
fraction

t = |p - q|

r = max(p,q)

Fraction
adder

Leading zero
counter

r c

Left shifter

c

Exponent
adder

r

s d

d

Stages:

S1

S2

S3

S4

C = A + B = c x 2 = d x 2 r s

(r = max (p,q), 0.5  d < 1)

Arithmetic PipelinePipelining and Vector Processing

203

Computer Organization Computer Architecture

INSTRUCTION CYCLE

Six Phases* in an Instruction Cycle

[1] Fetch an instruction from memory
[2] Decode the instruction
[3] Calculate the effective address of the operand
[4] Fetch the operands from memory
[5] Execute the operation
[6] Store the result in the proper place

* Some instructions skip some phases
* Effective address calculation can be done in

the part of the decoding phase
* Storage of the operation result into a register

is done automatically in the execution phase

==> 4-Stage Pipeline

[1] FI: Fetch an instruction from memory
[2] DA: Decode the instruction and calculate

the effective address of the operand
[3] FO: Fetch the operand
[4] EX: Execute the operation

Instruction PipelinePipelining and Vector Processing

204

Computer Organization Computer Architecture

INSTRUCTION PIPELINE

Execution of Three Instructions in a 4-Stage Pipeline

Instruction Pipeline

FI DA FO EX

FI DA FO EX

FI DA FO EX

i

i+1

i+2

Conventional

Pipelined

FI DA FO EX

FI DA FO EX

FI DA FO EX

i

i+1

i+2

Pipelining and Vector Processing

205

Computer Organization Computer Architecture

INSTRUCTION EXECUTION IN A 4-STAGE PIPELINE

1 2 3 4 5 6 7 8 9 10 12 1311

FI DA FO EX1

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

FI DA FO EX

2

3

4

5

6

7

FI

Step:

Instruction

(Branch)

Instruction Pipeline

Fetch instruction
from memory

Decode instruction
and calculate

effective address

Branch?

Fetch operand
from memory

Execute instruction

Interrupt?Interrupt
handling

Update PC

Empty pipe

no

yes

yes
no

Segment1:

Segment2:

Segment3:

Segment4:

Pipelining and Vector Processing

206

Computer Organization Computer Architecture

MAJOR HAZARDS IN PIPELINED EXECUTION
Structural hazards(Resource Conflicts)

Hardware Resources required by the instructions in
simultaneous overlapped execution cannot be met

Data hazards (Data Dependency Conflicts)

An instruction scheduled to be executed in the pipeline requires the
result of a previous instruction, which is not yet available

JMP ID PC + PC

bubble IF ID OF OE OS

Branch address dependency

Hazards in pipelines may make it
necessary to stall the pipeline

Pipeline Interlock:
Detect Hazards Stall until it is cleared

Instruction Pipeline

ADD DA B,C +

INC DA +1R1bubble

Data dependencyR1 <- B + C
R1 <- R1 + 1

Control hazards

Branches and other instructions that change the PC
make the fetch of the next instruction to be delayed

Pipelining and Vector Processing

207

Computer Organization Computer Architecture

STRUCTURAL HAZARDS

Structural Hazards

Occur when some resource has not been
duplicated enough to allow all combinations
of instructions in the pipeline to execute

Example: With one memory-port, a data and an instruction fetch
cannot be initiated in the same clock

The Pipeline is stalled for a structural hazard
<- Two Loads with one port memory

-> Two-port memory will serve without stall

Instruction Pipeline

FI DA FO EXi

i+1

i+2

FI DA FO EX

FI DA FO EXstallstall

Pipelining and Vector Processing

208

Computer Organization Computer Architecture

DATA HAZARDS

Data Hazards

Occurs when the execution of an instruction
depends on the results of a previous instruction

ADD R1, R2, R3
SUB R4, R1, R5

Hardware Technique

Interlock
- hardware detects the data dependencies and delays the scheduling

of the dependent instruction by stalling enough clock cycles
Forwarding (bypassing, short-circuiting)

- Accomplished by a data path that routes a value from a source
(usually an ALU) to a user, bypassing a designated register. This
allows the value to be produced to be used at an earlier stage in the
pipeline than would otherwise be possible

Software Technique
Instruction Scheduling(compiler) for delayed load

Data hazard can be dealt with either hardware
techniques or software technique

Instruction PipelinePipelining and Vector Processing

209

Computer Organization Computer Architecture

FORWARDING HARDWARE

Register

file

Result

write bus

Bypass

path

ALU result buffer

MUX

ALU

R4

MUX

Instruction Pipeline

Example:

ADD R1, R2, R3
SUB R4, R1, R5

3-stage Pipeline

I: Instruction Fetch
A: Decode, Read Registers,

ALU Operations
E: Write the result to the

destination register

I A EADD

SUB I A E Without Bypassing

I A ESUB With Bypassing

Pipelining and Vector Processing

210

Computer Organization Computer Architecture

INSTRUCTION SCHEDULING

a = b + c;
d = e - f;

Unscheduled code:

Delayed Load

A load requiring that the following instruction not use its result

Scheduled Code:

LW Rb, b
LW Rc, c
LW Re, e
ADD Ra, Rb, Rc
LW Rf, f
SW a, Ra
SUB Rd, Re, Rf
SW d, Rd

LW Rb, b
LW Rc, c
ADD Ra, Rb, Rc
SW a, Ra
LW Re, e
LW Rf, f
SUB Rd, Re, Rf
SW d, Rd

Instruction PipelinePipelining and Vector Processing

211

Computer Organization Computer Architecture

CONTROL HAZARDS

Branch Instructions

- Branch target address is not known until
the branch instruction is completed

- Stall -> waste of cycle times

FI DA FO EX

FI DA FO EX

Branch
Instruction

Next
Instruction

Target address available

Dealing with Control Hazards

* Prefetch Target Instruction
* Branch Target Buffer
* Loop Buffer
* Branch Prediction
* Delayed Branch

Instruction PipelinePipelining and Vector Processing

212

Computer Organization Computer Architecture

CONTROL HAZARDS

Instruction Pipeline

Prefetch Target Instruction

– Fetch instructions in both streams, branch not taken and branch taken

– Both are saved until branch branch is executed. Then, select the right

instruction stream and discard the wrong stream

Branch Target Buffer(BTB; Associative Memory)

– Entry: Addr of previously executed branches; Target instruction

and the next few instructions

– When fetching an instruction, search BTB.

– If found, fetch the instruction stream in BTB;

– If not, new stream is fetched and update BTB

Loop Buffer(High Speed Register file)
– Storage of entire loop that allows to execute a loop without accessing memory

Branch Prediction
– Guessing the branch condition, and fetch an instruction stream based on

the guess. Correct guess eliminates the branch penalty

Delayed Branch

– Compiler detects the branch and rearranges the instruction sequence

by inserting useful instructions that keep the pipeline busy

in the presence of a branch instruction

Pipelining and Vector Processing

213

Computer Organization Computer Architecture

RISC PIPELINE

Instruction Cycles of Three-Stage Instruction Pipeline

RISC Pipeline

RISC
- Machine with a very fast clock cycle that
executes at the rate of one instruction per cycle
<- Simple Instruction Set

Fixed Length Instruction Format
Register-to-Register Operations

Data Manipulation Instructions
I: Instruction Fetch
A: Decode, Read Registers, ALU Operations
E: Write a Register

Load and Store Instructions
I: Instruction Fetch
A: Decode, Evaluate Effective Address
E: Register-to-Memory or Memory-to-Register

Program Control Instructions
I: Instruction Fetch
A: Decode, Evaluate Branch Address
E: Write Register(PC)

Pipelining and Vector Processing

214

Computer Organization Computer Architecture

DELAYED LOAD

Three-segment pipeline timing

Pipeline timing with data conflict

clock cycle 1 2 3 4 5 6
Load R1 I A E
Load R2 I A E
Add R1+R2 I A E
Store R3 I A E

Pipeline timing with delayed load

clock cycle 1 2 3 4 5 6 7
Load R1 I A E
Load R2 I A E
NOP I A E
Add R1+R2 I A E
Store R3 I A E

LOAD: R1  M[address 1]

LOAD: R2  M[address 2]

ADD: R3  R1 + R2

STORE: M[address 3]  R3

RISC Pipeline

The data dependency is taken
care by the compiler rather
than the hardware

Pipelining and Vector Processing

215

Computer Organization Computer Architecture

DELAYED BRANCH

1

I

3 4 652Clock cycles:

1. Load A

2. Increment

4. Subtract

5. Branch to X

7

3. Add

8

6. NOP

E

I A E

I A E

I A E

I A E

I A E

9 10

7. NOP

8. Instr. in X

I A E

I A E

1

I

3 4 652Clock cycles:

1. Load A

2. Increment

4. Add

5. Subtract

7

3. Branch to X

8

6. Instr. in X

E

I A E

I A E

I A E

I A E

I A E

Compiler analyzes the instructions before and after
the branch and rearranges the program sequence by
inserting useful instructions in the delay steps

Using no-operation instructions

Rearranging the instructions

RISC PipelinePipelining and Vector Processing

216

Computer Organization Computer Architecture

VECTOR PROCESSING

Vector Processing

Vector Processing Applications

• Problems that can be efficiently formulated in terms of vectors

– Long-range weather forecasting

– Petroleum explorations

– Seismic data analysis

– Medical diagnosis

– Aerodynamics and space flight simulations

– Artificial intelligence and expert systems

– Mapping the human genome

– Image processing

Vector Processor (computer)

Ability to process vectors, and related data structures such as matrices

and multi-dimensional arrays, much faster than conventional computers

Vector Processors may also be pipelined

Pipelining and Vector Processing

217

Computer Organization Computer Architecture

VECTOR PROGRAMMING

DO 20 I = 1, 100
20 C(I) = B(I) + A(I)

Conventional computer

Initialize I = 0
20 Read A(I)

Read B(I)
Store C(I) = A(I) + B(I)
Increment I = i + 1
If I  100 goto 20

Vector computer

C(1:100) = A(1:100) + B(1:100)

Vector ProcessingPipelining and Vector Processing

218

Computer Organization Computer Architecture

VECTOR INSTRUCTIONS

f1: V * V
f2: V * S
f3: V x V * V
f4: V x S * V

V: Vector operand
S: Scalar operand

Type Mnemonic Description (I = 1, ..., n)

Vector Processing

f1 VSQR Vector square root B(I) * SQR(A(I))

VSIN Vector sine B(I) * sin(A(I))

VCOM Vector complement A(I) * A(I)

f2 VSUM Vector summation S * S A(I)

VMAX Vector maximum S * max{A(I)}

f3 VADD Vector add C(I) * A(I) + B(I)

VMPY Vector multiply C(I) * A(I) * B(I)

VAND Vector AND C(I) * A(I) . B(I)

VLAR Vector larger C(I) * max(A(I),B(I))

VTGE Vector test > C(I) * 0 if A(I) < B(I)

C(I) * 1 if A(I) > B(I)

f4 SADD Vector-scalar add B(I) * S + A(I)

SDIV Vector-scalar divide B(I) * A(I) / S

Pipelining and Vector Processing

219

Computer Organization Computer Architecture

VECTOR INSTRUCTION FORMAT

Operation
code

Base address
source 1

Base address
source 2

Base address
destination

Vector
length

Vector Processing

Vector Instruction Format

Source
A

Source
B

Multiplier
pipeline

Adder
pipeline

Pipeline for Inner Product

Pipelining and Vector Processing

220

Computer Organization Computer Architecture

MULTIPLE MEMORY MODULE AND INTERLEAVING

Vector Processing

Multiple Module Memory

Address Interleaving

Different sets of addresses are assigned to
different memory modules

AR

Memory

array

DR

AR

Memory

array

DR

AR

Memory

array

DR

AR

Memory

array

DR

Address bus

Data bus

M0 M1 M2 M3

Pipelining and Vector Processing

221

Computer Organization Computer Architecture

MULTIPROCESSORS

• Characteristics of Multiprocessors

• Interconnection Structures

• Interprocessor Arbitration

• Interprocessor Communication

and Synchronization

• Cache Coherence

Multiprocessors

222

Computer Organization Computer Architecture

TERMINOLOGY

Parallel Computing

Simultaneous use of multiple processors, all components

of a single architecture, to solve a task. Typically processors identical,

single user (even if machine multiuser)

Distributed Computing

Use of a network of processors, each capable of being

viewed as a computer in its own right, to solve a problem. Processors

may be heterogeneous, multiuser, usually individual task is assigned

to a single processors

Concurrent Computing

All of the above?

Characteristics of MultiprocessorsMultiprocessors

223

Computer Organization Computer Architecture

TERMINOLOGY

Supercomputing

Use of fastest, biggest machines to solve big, computationally

intensive problems. Historically machines were vector computers,

but parallel/vector or parallel becoming the norm

Pipelining

Breaking a task into steps performed by different units, and multiple

inputs stream through the units, with next input starting in a unit when

previous input done with the unit but not necessarily done with the task

Vector Computing

Use of vector processors, where operation such as multiply

broken into several steps, and is applied to a stream of operands

(“vectors”). Most common special case of pipelining

Systolic

Similar to pipelining, but units are not necessarily arranged linearly,

steps are typically small and more numerous, performed in lockstep

fashion. Often used in special-purpose hardware such as image or signal

processors

Characteristics of MultiprocessorsMultiprocessors

224

Computer Organization Computer Architecture

SPEEDUP AND EFFICIENCY

A: Given problem

T*(n): Time of best sequential algorithm to solve an

instance of A of size n on 1 processor

Tp(n): Time needed by a given parallel algorithm

and given parallel architecture to solve an

instance of A of size n, using p processors

Note: T*(n)  T1(n)

Speedup: T*(n) / Tp(n)

Efficiency: T*(n) / [pTp(n)]

Speedup should be between 0 and p, and

Efficiency should be between 0 and 1

Speedup is linear if there is a constant c > 0

so that speedup is always at least cp.

1 2 3 4 5 6 7 8 9 10

Processors

Speedup
Perfect Speedup

Characteristics of MultiprocessorsMultiprocessors

225

Computer Organization Computer Architecture

AMDAHL’S LAW

Given a program

f : Fraction of time that represents operations

that must be performed serially

Maximum Possible Speedup: S

S  , with p processors
f + (1 - f) / p

1

S < 1 / f , with unlimited number of processors

- Ignores possibility of new algorithm, with much smaller f

- Ignores possibility that more of program is run from higher speed

memory such as Registers, Cache, Main Memory

- Often problem is scaled with number of processors, and f is a

function of size which may be decreasing (Serial code may take

constant amount of time, independent of size)

Characteristics of MultiprocessorsMultiprocessors

226

Computer Organization Computer Architecture

FLYNN’s HARDWARE TAXONOMY

SI: Single Instruction Stream

- All processors are executing the same instruction in the same cycle

- Instruction may be conditional

- For Multiple processors, the control processor issues an instruction

MI: Multiple Instruction Stream

- Different processors may be simultaneously

executing different instructions

SD: Single Data Stream

- All of the processors are operating on the same

data items at any given time

MD: Multiple Data Stream

- Different processors may be simultaneously

operating on different data items

SISD : standard serial computer

MISD : very rare

MIMD and SIMD : Parallel processing computers

I: Instruction Stream
D: Data Stream

M
S S

[] I [] DM

Characteristics of MultiprocessorsMultiprocessors

227

Computer Organization Computer Architecture

Tightly Coupled System

- Tasks and/or processors communicate in a highly synchronized

fashion

- Communicates through a common shared memory

- Shared memory system

Loosely Coupled System

- Tasks or processors do not communicate in a

synchronized fashion

- Communicates by message passing packets

- Overhead for data exchange is high

- Distributed memory system

COUPLING OF PROCESSORS

Characteristics of MultiprocessorsMultiprocessors

228

Computer Organization Computer Architecture

Granularity of Parallelism

GRANULARITY OF PARALLELISM

Coarse-grain

- A task is broken into a handful of pieces, each

of which is executed by a powerful processor

- Processors may be heterogeneous

- Computation/communication ratio is very high

Medium-grain

- Tens to few thousands of pieces

- Processors typically run the same code

- Computation/communication ratio is often hundreds or more

Fine-grain

- Thousands to perhaps millions of small pieces, executed by very

small, simple processors or through pipelines

- Processors typically have instructions broadcasted to them

- Compute/communicate ratio often near unity

Characteristics of MultiprocessorsMultiprocessors

229

Computer Organization Computer Architecture

MEMORY

Network

Processors

Memory

SHARED MEMORY

Network

Processors/Memory

DISTRIBUTED MEMORY

Shared (Global) Memory

- A Global Memory Space accessible by all processors
- Processors may also have some local memory

Distributed (Local, Message-Passing) Memory

- All memory units are associated with processors
- To retrieve information from another processor's

memory a message must be sent there

Uniform Memory

- All processors take the same time to reach all memory locations

Nonuniform (NUMA) Memory

- Memory access is not uniform

Characteristics of MultiprocessorsMultiprocessors

230

Computer Organization Computer Architecture

SHARED MEMORY MULTIPROCESSORS

Characteristics

All processors have equally direct access to one
large memory address space

Example systems

- Bus and cache-based systems: Sequent Balance, Encore Multimax
- Multistage IN-based systems: Ultracomputer, Butterfly, RP3, HEP
- Crossbar switch-based systems: C.mmp, Alliant FX/8

Limitations

Memory access latency; Hot spot problem

Interconnection Network

. . .

. . .P PP

M MM

Buses,
Multistage IN,
Crossbar Switch

Characteristics of MultiprocessorsMultiprocessors

231

Computer Organization Computer Architecture

MESSAGE-PASSING MULTIPROCESSORS

Characteristics

- Interconnected computers
- Each processor has its own memory, and

communicate via message-passing

Example systems

- Tree structure: Teradata, DADO
- Mesh-connected: Rediflow, Series 2010, J-Machine
- Hypercube: Cosmic Cube, iPSC, NCUBE, FPS T Series, Mark III

Limitations

- Communication overhead; Hard to programming

Message-Passing Network

. . .P PP

M M M. . .

Point-to-point connections

Characteristics of MultiprocessorsMultiprocessors

232

Computer Organization Computer Architecture

* Time-Shared Common Bus
* Multiport Memory
* Crossbar Switch
* Multistage Switching Network
* Hypercube System

INTERCONNECTION STRUCTURES

Interconnection Structure

Bus

All processors (and memory) are connected to a
common bus or busses
- Memory access is fairly uniform, but not very scalable

Multiprocessors

233

Computer Organization Computer Architecture

- A collection of signal lines that carry module-to-module communication
- Data highways connecting several digital system elements

Operations of Bus

Bus

M3 wishes to communicate with S5

[1] M3 sends signals (address) on the bus that causes
S5 to respond

[2] M3 sends data to S5 or S5 sends data to
M3(determined by the command line)

Master Device: Device that initiates and controls the communication

Slave Device: Responding device

Multiple-master buses
-> Bus conflict
-> need bus arbitration

Devices

M3 S7 M6 S5
M4
S2

BUS

Interconnection StructureMultiprocessors

234

Computer Organization Computer Architecture

SYSTEM BUS STRUCTURE FOR MULTIPROCESSORS

Interconnection Structure

Common
Shared
Memory

System
Bus

Controller

CPU IOP
Local

Memory

System
Bus

Controller

CPU
Local

Memory

System
Bus

Controller
CPU IOP

Local
Memory

Local Bus

SYSTEM BUS

Local Bus Local Bus

Multiprocessors

235

Computer Organization Computer Architecture

MULTIPORT MEMORY

Interconnection Structure

Multiport Memory Module
- Each port serves a CPU

Memory Module Control Logic
- Each memory module has control logic
- Resolve memory module conflicts Fixed priority among CPUs

Advantages
- Multiple paths -> high transfer rate

Disadvantages
- Memory control logic
- Large number of cables and

connections

MM 1 MM 2 MM 3 MM 4

CPU 1

CPU 2

CPU 3

CPU 4

Memory Modules

Multiprocessors

236

Computer Organization Computer Architecture

CROSSBAR SWITCH

Interconnection Structure

MM1

CPU1

CPU2

CPU3

CPU4

Memory modules

MM2 MM3 MM4

Block Diagram of Crossbar Switch

Memory
Module

data

address

R/W

memory
enable

}

}

}

}

data,address, and
control from CPU 1

data,address, and
control from CPU 2

data,address, and
control from CPU 3

data,address, and
control from CPU 4

Multiplexers
and

arbitration
logic

Multiprocessors

237

Computer Organization Computer Architecture

MULTISTAGE SWITCHING NETWORK

Interconnection Structure

A

B

0

1

A connected to 0

A

B

0

1

A connected to 1

A

B

0

1

B connected to 0

A

B

0

1

B connected to 1

Interstage Switch

Multiprocessors

238

Computer Organization Computer Architecture

MULTISTAGE INTERCONNECTION NETWORK

Interconnection Structure

0

1

000

001

0

1

010

011

0

1

100

101

0

1

110

111

0

1

0

1

0

1

P1

P2

8x8 Omega Switching Network

0

1

2

3

4

5

6

7

000

001

010

011

100

101

110

111

Binary Tree with 2 x 2 Switches

Multiprocessors

239

Computer Organization Computer Architecture

HYPERCUBE INTERCONNECTION

Interconnection Structure

- p = 2n

- processors are conceptually on the corners of a

n-dimensional hypercube, and each is directly

connected to the n neighboring nodes

- Degree = n

One-cube Two-cube Three-cube

11 010

1 00 10

010

110

011 111

101

100

001

000

n-dimensional hypercube (binary n-cube)

Multiprocessors

240

Computer Organization Computer Architecture

INTERPROCESSOR ARBITRATION

Bus
Board level bus
Backplane level bus
Interface level bus

System Bus - A Backplane level bus

- Printed Circuit Board
- Connects CPU, IOP, and Memory
- Each of CPU, IOP, and Memory board can be

plugged into a slot in the backplane(system bus)
- Bus signals are grouped into 3 groups

Data, Address, and Control(plus power)

- Only one of CPU, IOP, and Memory can be
granted to use the bus at a time

- Arbitration mechanism is needed to handle
multiple requests

Interprocessor Arbitration

e.g. IEEE standard 796 bus
- 86 lines

Data: 16(multiple of 8)
Address: 24
Control: 26
Power: 20

Multiprocessors

241

Computer Organization Computer Architecture

SYNCHRONOUS & ASYNCHRONOUS DATA TRANSFER

Synchronous Bus
Each data item is transferred over a time slice
known to both source and destination unit
- Common clock source
- Or separate clock and synchronization signal

is transmitted periodically to synchronize
the clocks in the system

Asynchronous Bus

* Each data item is transferred by Handshake
mechanism

- Unit that transmits the data transmits a control
signal that indicates the presence of data

- Unit that receiving the data responds with
another control signal to acknowledge the
receipt of the data

* Strobe pulse - supplied by one of the units to
indicate to the other unit when the data transfer
has to occur

Interprocessor ArbitrationMultiprocessors

242

Computer Organization Computer Architecture

BUS SIGNALS

Bus signal allocation

- address
- data
- control
- arbitration
- interrupt
- timing
- power, ground

IEEE Standard 796 Multibus Signals

Data and address

Data lines (16 lines) DATA0 - DATA15

Address lines (24 lines) ADRS0 - ADRS23

Data transfer

Memory read MRDC

Memory write MWTC

IO read IORC

IO write IOWC

Transfer acknowledge TACK (XACK)

Interrupt control

Interrupt request INT0 - INT7

interrupt acknowledge INTA

Interprocessor ArbitrationMultiprocessors

243

Computer Organization Computer Architecture

BUS SIGNALS

IEEE Standard 796 Multibus Signals (Cont’d)

Miscellaneous control

Master clock CCLK

System initialization INIT

Byte high enable BHEN

Memory inhibit (2 lines) INH1 - INH2

Bus lock LOCK

Bus arbitration

Bus request BREQ

Common bus request CBRQ

Bus busy BUSY

Bus clock BCLK

Bus priority in BPRN

Bus priority out BPRO

Power and ground (20 lines)

Interprocessor ArbitrationMultiprocessors

244

Computer Organization Computer Architecture

INTERPROCESSOR ARBITRATION STATIC ARBITRATION

Serial Arbitration Procedure

Parallel Arbitration Procedure

Interprocessor Arbitration

Bus
arbiter 1

PI PO Bus

arbiter 2
PI PO Bus

arbiter 3

PI PO Bus
arbiter 4

PI PO

Highest

priority

1

Bus busy line

To next

arbiter

Bus

arbiter 1

Ack Req

Bus

arbiter 2

Ack Req

Bus

arbiter 3

Ack Req

Bus

arbiter 4

Ack Req

Bus busy line

4 x 2

Priority encoder

2 x 4

Decoder

Multiprocessors

245

Computer Organization Computer Architecture

INTERPROCESSOR ARBITRATION DYNAMIC ARBITRATION

Priorities of the units can be dynamically changeable
while the system is in operation

Time Slice
Fixed length time slice is given sequentially to
each processor, round-robin fashion

Polling
Unit address polling - Bus controller advances
the address to identify the requesting unit

LRU

FIFO

Rotating Daisy Chain
Conventional Daisy Chain - Highest priority to the

nearest unit to the bus controller
Rotating Daisy Chain - Highest priority to the unit

that is nearest to the unit that has
most recently accessed the bus(it
becomes the bus controller)

Interprocessor ArbitrationMultiprocessors

246

Computer Organization Computer Architecture

INTERPROCESSOR COMMUNICATION

Interprocessor Communication

Interprocessor Communication and Synchronization

Shared Memory

Communication Area

Receiver(s)

Mark

Sending
Processor

Receiving
Processor

Receiving
Processor

Receiving
Processor

.

.

.

Message

Shared Memory

Receiver(s)

Mark

Sending
Processor

Receiving
Processor

Receiving
Processor

Receiving
Processor

.

.

.

Message

Instruction

Interrupt

Communication Area

Multiprocessors

247

Computer Organization Computer Architecture

INTERPROCESSOR SYNCHRONIZATION

Synchronization
Communication of control information between processors

- To enforce the correct sequence of processes
- To ensure mutually exclusive access to shared writable data

Hardware Implementation

Mutual Exclusion with a Semaphore
Mutual Exclusion

- One processor to exclude or lock out access to shared resource by
other processors when it is in a Critical Section

- Critical Section is a program sequence that,
once begun, must complete execution before
another processor accesses the same shared resource

Semaphore
- A binary variable
- 1: A processor is executing a critical section,

that not available to other processors
0: Available to any requesting processor

- Software controlled Flag that is stored in
memory that all processors can be access

Interprocessor Communication and SynchronizationMultiprocessors

248

Computer Organization Computer Architecture

SEMAPHORE

Testing and Setting the Semaphore

- Avoid two or more processors test or set the same semaphore
- May cause two or more processors enter the

same critical section at the same time
- Must be implemented with an indivisible operation

R <- M[SEM] / Test semaphore /
M[SEM] <- 1 / Set semaphore /

These are being done while locked, so that other processors cannot test
and set while current processor is being executing these instructions

If R=1, another processor is executing the
critical section, the processor executed
this instruction does not access the
shared memory

If R=0, available for access, set the semaphore to 1 and access

The last instruction in the program must clear the semaphore

Interprocessor Communication and SynchronizationMultiprocessors

249

Computer Organization Computer Architecture

CACHE COHERENCE

Cache Coherence

Caches are Coherent

Cache Incoherency in
Write Through Policy

Cache Incoherency in Write Back Policy

X = 120

X = 120

P1

X = 52

P2

X = 52

P3

Main memory

Caches

Processors

Bus

X = 52

X = 120

P1

X = 52

P2

X = 52

P3

Main memory

Caches

Processors

Bus

X = 52

X = 52

P1

X = 52

P2

X = 52

P3

Main memory

Caches

Processors

Bus

Multiprocessors

250

Computer Organization Computer Architecture

MAINTAINING CACHE COHERENCY

Shared Cache
- Disallow private cache
- Access time delay

Software Approaches
* Read-Only Data are Cacheable
- Private Cache is for Read-Only data
- Shared Writable Data are not cacheable
- Compiler tags data as cacheable and noncacheable
- Degrade performance due to software overhead

* Centralized Global Table
- Status of each memory block is maintained in CGT: RO(Read-Only); RW(Read and Write)
- All caches can have copies of RO blocks
- Only one cache can have a copy of RW block

Hardware Approaches
* Snoopy Cache Controller

- Cache Controllers monitor all the bus requests from CPUs and IOPs
- All caches attached to the bus monitor the write operations
- When a word in a cache is written, memory is also updated (write through)
- Local snoopy controllers in all other caches check their memory to determine if they have
a copy of that word; If they have, that location is marked invalid(future reference to
this location causes cache miss)

Cache CoherenceMultiprocessors

251

Computer Organization Computer Architecture

PARALLEL COMPUTING

Grosche’s Law

Grosch’s Law states that the speed of computers is proportional to the
square of their cost. Thus if you are looking for a fast computer, you are
better off spending your money buying one large computer than two
small computers and connecting them.

Grosch’s Law is true within classes of computers, but not true between
classes. Computers may be priced according to Groach’s Law, but the
Law cannot be true asymptotically.

Minsky’s Conjecture

Minsky’s conjecture states that the speedup achievable
by a parallel computer increases as the logarithm of the
number of processing elements,thus making large-scale
parallelism unproductive.

Many experimental results have shown linear speedup for over
100 processors.

Parallel ComputingMultiprocessors

252

Computer Organization Computer Architecture

PARALLEL COMPUTING

n 

Amdahl’s Law

A small number of sequential operations can effectively
limit the speedup of a parallel algorithm.
Let f be the fraction of operations in a computation that must be performed sequentially,
where 0 < f < 1. Then the maximum speedup S achievable by a parallel computer with p processors
performing the computation is S < 1 / [f + (1 - f) / p]. For example, if 10% of the computation must be
performed sequentially, then the maximum speedup achievable is 10, no matter how many
processors a parallel computer has.

There exist some parallel algorithms with almost no sequential operations. As the problem size(n)
increases, f becomes smaller (f -> 0 as n->In this case, lim S = p.

Parallel Computing

History

History tells us that the speed of traditional single CPU
Computers has increased 10 folds every 5 years.
Why should great effort be expended to devise a parallel
computer that will perform tasks 10 times faster when,
by the time the new architecture is developed and
implemented, single CPU computers will be just as fast.

Utilizing parallelism is better than waiting.

Multiprocessors

253

Computer Organization Computer Architecture

PARALLEL COMPUTING

Pipelined Computers are Sufficient

Most supercomputers are vector computers, and most of the successes
attributed to supercomputers have accomplished on pipelined vector
processors, especially Cray=1 and Cyber-205.

If only vector operations can be executed at high speed, supercomputers
will not be able to tackle a large number of important problems. The
latest supercomputers incorporate both pipelining and high level
parallelism (e.g., Cray-2)

Software Inertia

Billions of dollars worth of FORTRAN software exists.
Who will rewrite them? Virtually no programmers have
any experience with a machine other than a single CPU
computer. Who will retrain them ?

Parallel ComputingMultiprocessors

254

Computer Organization Computer Architecture

INTERCONNECTION NETWORKS

Switching Network (Dynamic Network)
Processors (and Memory) are connected to routing
switches like in telephone system
- Switches might have queues(combining logic),

which improve functionality but increase latency
- Switch settings may be determined by message

headers or preset by controller
- Connections can be packet-switched or circuit-

switched(remain connected as long as it is needed)
- Usually NUMA, blocking, often scalable and upgradable

Point-Point (Static Network)
Processors are directly connected to only certain other processors and
must go multiple hops to get to additional processors

- Usually distributed memory
- Hardware may handle only single hops, or multiple hops
- Software may mask hardware limitations
- Latency is related to graph diameter, among many other factors
- Usually NUMA, nonblocking, scalable, upgradable
- Ring, Mesh, Torus, Hypercube, Binary Tree

Interconnection StructureMultiprocessors

255

Computer Organization Computer Architecture

INTERCONNECTION NETWORKS

Switch Processor

Multistage Interconnect

Bus

Interconnection StructureMultiprocessors

256

Computer Organization Computer Architecture

INTERCONNECTION NETWORKS

Static Topology - Direct Connection

- Provide a direct inter-processor communication path
- Usually for distributed-memory multiprocessor

Dynamic Topology - Indirect Connection

- Provide a physically separate switching network
for inter-processor communication

- Usually for shared-memory multiprocessor

Direct Connection

Interconnection Network

A graph G(V,E)

V: a set of processors (nodes)

E: a set of wires (edges)

Performance Measures: - degree, diameter, etc

Interconnection StructureMultiprocessors

257

Computer Organization Computer Architecture

INTERCONNECTION NETWORKS

Complete connection

- Every processor is directly connected to every other processors

- Diameter = 1, Degree = p - 1

- # of wires = p (p - 1) / 2; dominant cost

- Fan-in/fanout limitation makes it impractical for large p

- Interesting as a theoretical model because algorithm bounds for this

model are automatically lower bounds for all direct connection machines

Ring

- Degree = 2, (not a function of p)

- Diameter =  p/2 

Interconnection StructureMultiprocessors

258

Computer Organization Computer Architecture

INTERCONNECTION NETWORKS

• 2-Mesh

- Degree = 4

- Diameter = 2(m - 1)

- In general, an n-dimensional mesh has

diameter = d (p1/n - 1)
- Diameter can be halved by having wrap-around

connections (-> Torus)
- Ring is a 1-dimensional mesh with wrap-around

connection

m = p
2

. . .

. . .

m

m

Interconnection StructureMultiprocessors

259

Computer Organization Computer Architecture

INTERCONNECTION NETWORK

Binary Tree

- Degree = 3

- Diameter = 2 log
p + 1

2

Interconnection StructureMultiprocessors

260

Computer Organization Computer Architecture

MIN SPACE

• Baseline [Wu80]
• Flip [Batcher76]
• Indirect binary

n-cube [Peas77]
• Omega [Lawrie75]
• Regular SW banyan

[Goke73]

Delta network [Patel81]

Banyan network
=(unique path network)

PM2I network

• Data Manipulator
[Feng74]

• Augmented DM
[Siegel78]

• Inverse ADM
[Siegel79]

• Gamma [Parker84]

• Extra stage Cube
[Adams82]

• Replicated/Dialted
Delta netork

[Kruskal83]
• B-delta [Yoon88]

Multiple Path Network

Permutation/Sorting Network
(N !)

• Clos network [53]
• Benes network [62]
• Batcher sorting

network [68]

M I N

Interconnection StructureMultiprocessors

261

Computer Organization Computer Architecture

SOME CURRENT PARALLEL COMPUTERS

DM-SIMD
• AMT DAP
• Goodyear MPP
• Thinking Machines CM series
• MasPar MP1
• IBM GF11

SM-MIMD
• Alliant FX
• BBN Butterfly
• Encore Multimax
• Sequent Balance/Symmetry
• CRAY 2, X-MP, Y-MP
• IBM RP3
• U. Illinois CEDAR

DM-MIMD
• Intel iPSC series, Delta machine
• NCUBE series
• Meiko Computing Surface
• Carnegie-Mellon/ Intel iWarp

Multiprocessors

14. Feedback on Curriculum Design and development:

15.CO/PO attainment, analysis and Action taken report:

Name of the subject: CO&A Yr/Sem:-II/I

Batch: 21 Academic Year: 2022-23 Branch: CSE-A

Course Attainment

Final Direct Course Attainment Final Indirect

Course

Attainment

Calculation

 Mid

1

Mid 2 Quiz 1 Quiz 2 Assign-1 Assign-2 Internal University

CO 1

 CO 1

CO 2

 CO 2

CO 3

 CO 3

CO 4

 CO 4

CO 5

CO 5

 Attainment Final

Indirect

Course

attainment

Weightage

Direct Total Attainment

final direct course attainment

Weightage

Total Attainment

Course Attainment

Name of the subject: CO&A Yr/Sem:-II/I

Batch: 21 Academic Year: 2022-23 Branch: CSE-B

Course Attainment

Final Direct Course Attainment Final Indirect

Course

Attainment

Calculation

 Mid

1

Mid

2

Quiz 1 Quiz 2 Assign-1 Assign-2 Internal University

CO 1

 CO 1

CO 2

 CO 2

CO 3

 CO 3

CO 4

 CO 4

CO 5

CO 5

 Attainment Final

Indirect

Course

attainment

Weightage

Direct Total Attainment

final direct course attainment

Weightage

Total Attainment

Course Attainment

Name of the subject: CO&A Yr/Sem:-II/I

Batch: 21 Academic Year: 2022-23 Branch: CSE-C

Course Attainment

Final Direct Course Attainment Final Indirect

Course

Attainment

Calculation

 Mi

d 1

Mid 2 Quiz 1 Quiz 2 Assign-1 Assign-2 Internal University

CO 1

 CO 1

CO 2

 CO 2

CO 3

 CO 3

CO 4

 CO 4

CO 5

CO 5

 Attainment Final

Indirect

Course

attainment

Weight age

Direct Total Attainment

Final Direct Course Attainment

Weight age

Total Attainment

Course Attainment

 CO to PO Attainment (2022-23)

 Course

Outcomes

(CO’s)

Program Outcomes (PO’s) PSO’s

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

PSO

1

PSO

2

PSO

3

TOTAL

Formula: (1/3*average of PO*course attainment)

	COMPUTER ORGANIZATION AND ARCHITECTURE
	Course Objectives:
	COURSE SYLLABUS
	MODULE- I
	MODULE- II
	MODULE- III
	MODULE- IV
	MODULE- V
	TEXT BOOK:
	REFERENCE BOOKS:
	TEXT BOOK: (1)
	1. Computer System Architecture–M.MorisMano, Third Edition, Pearson/PHI.
	REFERENCE BOOKS: (1)
	DIGITAL COMPUTERS
	Types of Multiprocessors
	Symmetric Multiprocessors
	Asymmetric Multiprocessors

	Advantages of Multiprocessor Systems
	Disadvantages of Multiprocessor Systems
	Characteristics of Multiprocessor

	Inter Process Communication (IPC)

